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a b s t r a c t

In this paper, a new hybrid optimization system is presented. Our approach integrates the merits of both
ant colony optimization and steady state genetic algorithm and it has two characteristic features. Firstly,
since there is instabilities in the global market and the rapid fluctuations of prices, a fuzzy representation
of the economic emission load dispatch (EELD) problem has been defined, where the input data involve
many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant
colony optimization through steady state genetic algorithm, a strong robustness and more effectively
algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense
only Pareto optimal solutions that are stable are of interest since there are always uncertainties
associated with efficiency data. Moreover to help the decision maker DM to extract the best compromise
solution from a finite set of alternatives a Technique for Order Performance by Similarity to Ideal
Solution (TOPSIS) method is adopted. It is based upon simultaneous minimization of distance from an
ideal point (IP) and maximization of distance from a nadir point (NP). The results on the standard IEEE
systems demonstrate the capabilities of the proposed approach to generate true and well-distributed
Pareto optimal nondominated solutions of the multiobjective EELD.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Optimal Power Flow (OPF) was the first discussed by Carpentier
[1]. In the past two decades, OPF problem has received much
attention, because of its ability to determine the dispatch of
generators so as to meet the load demand while minimizing the
total fuel cost, subject to the satisfaction of all constraints on the
system. OPF is a nonlinear, non-convex, large-scale, static optimi-
zation problem with both continuous and discrete control vari-
ables [2]. More objectives have recently been incorporated into the
OPF problem. These include optimization of active/reactive losses,
plant emissions, voltage profile and power plant stability. This has
extended the definition of the OPF problem from a single objective
case to a multiobjective one [3,4]. The Environmental/Economic
Dispatch multiobjective problem seeks to simultaneously mini-
mize both fuel cost and the emissions produced by power plants.
Environmental concerns on the effect of SO2 and NOX emissions
produced by the fossil-fueled power plants led to the inclusion of
minimization of emissions as an objective in the OPF formulation.

In the previous literatures various mathematical programming
and optimization techniques have been used to solve OPF.

Previously a number of conventional approaches such as the
gradient method, linear programming Algorithm, lambda iteration
method, quadratic programming, nonlinear programming algo-
rithm, Lagrange relaxation algorithm [5–10], etc. have been
applied for solving the EELD problems. These traditional classical
methods are based on the assumption that the incremental cost of
generator monotonically increases. Also, dynamic programming
[10] was proposed as a new algorithm, which does not impose any
restrictions on the nature of the cost curves and hence it can solve
both the convex and non-convex EELD problems. But this method
suffers from the curse of dimensionality in the solution procedure.

Nonlinear features of generators in practical aspects is the main
reason that generally a classical optimization technique may not
be able to find a solution with a significant computational time for
medium or large-scale EELD problem and on the other hand these
techniques may further being restricted by their lack of robustness
and efficiency in a number of practical limitations. Accordingly,
these limitations are redounded to introduce the evolutionary
algorithms methods [11]. Evolutionary algorithms (EAs) are sto-
chastic search methods that mimic the metaphor of natural
biological evolution and/or the social behavior of species. Because
of their universality, ease of implementation, and fitness for
parallel computing, EAs often take less time to find the optimal
solution than classical methods [12,13]. Also, availability of high-
speed computer system, more and more interests has been
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focused on the application of artificial intelligence technology for
solution of EELD problems. Recently, there has been a boom in
applying evolutionary algorithms to solve EELD problems. Several
artificial intelligence methods, such as the genetic algorithm [12–
15]; artificial neural networks [16]; simulated annealing, Tabu
search [17]; evolutionary programming [18]; swarm optimization
[19–22]; differential evolution [23], have been developed and
applied successfully to ELD problems. Hopfield neural networks
have also implemented [24] to solve EELD problems for units with
piecewise quadratic fuel cost functions and prohibited zones
constraint. In order to meet the ever increasing demands in the
design problems, a new evolutionary algorithm called ant colony
optimization algorithm have all been used successfully to mimic
the corresponding natural, or physical, or social phenomena[25–
27]. Ant colony optimization (ACO) is a metaheuristic inspired by
the shortest path searching behavior of various ant species. Since
the initial work of Dorigo et al. on the first ACO algorithm, the ant
system [28], several researchers have designed ACO systems to
deal with multiobjective problems.

Recently, other powerful techniques called hybridization meth-
ods have been suggested, The hybrid methods are applied to
handle more complicated constraints, including fuzzy adaptive
PSO algorithm with Nelder–Mead simplex search (FAPSO–NM)
[29], hybrid PSO and sequential quadratic programming (PSO–
SQP) [30], hybrid PSO and local serach scheme (PSO–LS) [31],
hybrid EP and sequential quadratic programming (EP–SQP) [32],
hybrid DE and sequential quadratic programming (DE–SQP) [33],
multiobjective evolutionary algorithm based on decomposition
(MOEA/D) [34], and Combining ACO with EA based on decom-
position MOEA/D [35].

This paper intends to present a new optimization algorithm for
solving EELD under fuzziness. The proposed approach integrates
the merits of both ACO and steady state Genetic algorithm SSGA
[36]. Since there is instabilities in the global market, implications
of global financial crisis and the rapid fluctuations of prices, for
this reasons a fuzzy representation of the multiobjective EELD has
been defined, where the input data involve many parameters
whose possible values may be assigned by the experts. In practice,
it is natural to consider that the possible values of these para-
meters as fuzzy numerical data which can be represented by
means of fuzzy subsets of the real line known as fuzzy numbers.
The proposed approach has two characteristic features. Firstly, a
fuzzy representation of the optimal power flow problem has been
defined. Secondly, by enhancing ACO through SSGA, a strong
robustness and more effectively optimization system was created.
Moreover to help the DM to extract the best compromise solution
from a finite set of alternatives a TOPSIS method is adopted.
Several optimization runs of the proposed approach will be carry
out on the standard IEEE systems to verify the validity of the
proposed approach.

Section 2 provides a brief description on multiobjective opti-
mization. The mathematical formulation of EELD problem is
discussed in Section 3. Section 4 reviews the standard ACO
metaheuristic The original optimization system is described in
Section 5 along with a short description of the algorithm used in
this test system. The parameter settings for the test system to
evaluate the performance of the optimization system and the
simulation studies are discussed in Section 6. Results and discus-
sion are given in Section 7. Finally, the conclusions is drawn in
Section 8.

2. Fuzzy multiobjective optimization

A Multi-objective Optimization Problem (MOP) can be defined
as determining a vector of design variables within a feasible region

to minimize a vector of objective functions that usually conflict
with each other. The following fuzzy vector minimization problem
(FVMP) involving fuzzy parameters in the objective functions and
constraints such a problem takes the form:

Min ff 1ðX; ~aÞ; f 2ðX; ~aÞ; :::::; f mðX; ~aÞg
subject to gðX; ~aÞr0

)
ð1Þ

where f1ðX; ~aÞ is the ith objective function; and gðX; ~aÞ is constraint
vector, X is vector of decision variables; and ~a ¼ ð ~a1; ~a2; :::: ~anÞ
represented a vector of fuzzy parameters in the problem. Fuzzy
parameters are assumed to be characterized as the fuzzy numbers.
The real fuzzy numbers ~a form a convex continuous fuzzy subset
of the real line whose membership function μ ~a ðaÞ is defined by:

1) a continuous mapping from R1 to the closed interval [0,1];
2) μ ~a ðaÞ ¼ 0 for all aA ½�1; a1�;
3) strictly increasing on ½a1; a2�;
4) μ ~a ðaÞ ¼ 1 for all aA ½a2; a3�;
5) strictly decreasing on ½a3; a4�;
6) μ ~a ðaÞ ¼ 0 for all aA ½a4; þ1�;

Assume that ~a in the FM-RAP are fuzzy numbers whose
membership functions are μ ~a ðaÞ.

Definition 1. (α-level set). The α-level set or α-cut of the fuzzy
numbers ~a is defined as the ordinary set Lαð ~aÞ for which the degree
of their membership functions exceeds the level αA 0;1½ �:
Lαð ~aÞ ¼ fajμ ~a ðaÞZαg:

For a certain degree α, the (FM-RAP) can be represented as a
nonfuzzy α-VMP as follows:

Min ff 1ðX; aÞ; f 2ðX; aÞ; :::::; f mðX; aÞg
subject to gðX; aÞr0
X ¼ ðx1; x2; :::xnÞ; a¼ ða1; a2; ::::; anÞ
LαirairUαi

9>>>>=
>>>>;

ð2Þ

where constraint LαirairUαi gives the lower and upper bound
for the parameters ai

Definition 2. (α–Pareto optimal solution). xnAX is said to be an
α–Pareto optimal solution to the (α-VMP), if and only if there does
not exist another xAX, aALαð ~aÞ such that f iðx; aÞZ f iðxn; anÞ;
i¼ 1;2; ::; k; with strictly inequality holding for at least one i,
where the corresponding values of parameters an

i are called α-
level optimal parameters.

In real world application problems, input data or related
parameters are frequently imprecise/fuzzy owing to incomplete
or unobtainable information, so the concept of Pareto stability is
introduced for the Pareto optimal solutions of a vector valued
problem of the allocation of resources to activities.

Definition 3. (Stable Pareto optimality) A Pareto- optimal solu-
tion x of the problem FVMP is said to be stable if and only if there
exists a real number αA ½0;1� such that x is still Pareto-optimal if
ais replaced by any a0 satisfying the following requirement:
a0ALαð ~aÞ ¼ fajμ ~a ðaÞZαg ð3Þ

Such a solution x is said to be a stable Pareto-optimal solution.
In practical sense only Pareto optimal solutions that are stable are
of interest since there are always uncertainties associated with the
efficiency data (input data).

3. Multiobjective formulation of EELD problem

The economic emission load dispatch involves the simulta-
neous optimization of fuel cost and emission objectives which are
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