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a b s t r a c t

This study examined patterns of individual differences in the acquisition of the knowledge of the
commutativity and complement principles in 115 five-to six-year-old children and explored the role of
concrete materials in helping children understand the prinicples. On the basis of latent profile analysis,
four groups of children were identified: The first group succeeded in commutativity tasks with concrete
materials but in no other tasks; the second succeeded in commutativity tasks in both concrete and
abstract conditions, but not in complement tasks; the third group succeeded in all commutativity tasks
and in complement tasks with concrete materials, and the final group succeeded in all the tasks. The four
groups of children suggest a developmental trend e (1) Knowledge of the commutativity and of the
complement principles seems to develop from thinking in the context of specific quantities to thinking
about more abstract symbols; (2) There may be an order of understanding of the principles e from the
commutativity to the complement principle; (3) Children may acquire the knowledge of the commu-
tativity principle in the more abstract tasks before they start to acquire the knowledge of the comple-
ment principle. This study contributes to the literature by showing that assessing additive reasoning in
different ways and identifying profiles with classification analyses may be useful for educators to un-
derstand more about the developmental stage where each child is placed. It appears that a more fine-
grained assessment of additive reasoning can be achieved by incorporating both concrete materials
and relatively abstract symbols in the assessment.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Children's understanding of logical principles in mathematics
has received increasing empirical attention in recent years because
of its importance in mathematical problem solving and computa-
tion (Baroody, Torbeyns,& Verschaffel, 2009; Ching& Nunes, 2016;
Nunes, Bryant, Barros, & Sylva, 2012; Nunes et al., 2007;
Verschaffel, Bryant, & Torbeyns, 2012). It has been argued that
children may initially understand mathematical principles in the
context of concrete referents (Bruner, 1960; Bryant, Christie, &
Rendu, 1999; Gilmore & Papadatou-Pastou, 2009; Hughes, 1981;
Piaget & Inhelder, 1975; Resnick, 1992; Vygotsky, 1962). Mathe-
matics models various aspects of the world effectively by creating
abstract structures that have properties shared with its real-world
counterpart. We can manipulate and use the mathematical model

to predict and make conclusions about events if the model acts in
ways that truly corresponds to it. Some researchers have proposed
that concretematerials can be used as an intermediary between the
symbolic-mathematical world and the real world (Bruner, 1966;
Piaget, 1952; Resnick, 1992). The concrete model is often consid-
ered more abstract than the actual situation, but less abstract than
the mathematical model represented by numerical symbols. Thus,
they may act as a vehicle through which children model the
quantitative aspects of the real world. However, the notion that
children's thinking is inherently concrete in nature is not univer-
sally accepted (Gelman & Wellman, 1991; Gelman, 2000, 2003).
Some evidence suggests that concrete materials may facilicate the
understanding of certain prinicples only (Canobi, Reeve,& Pattison,
2003). In the present study, we examined patterns of individual
differences in children's knowledge of two essential prinicples in,
additive reasoning, namely the commutativity principle and the
complement principle. Using a ‘person-centered’ approach
(Bergman &Magnusson, 1997; Bisanz, Watchorn, Piatt, & Sherman,
2009; Laursen & Hoff, 2006), we aimed to explore patterns of in-
dividual differences in children's performance on different
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reasoning tasks (commutativity and complement principles) in
different testing contexts (with and without the support of con-
crete materials).

1.1. The importance of understanding the commutativity and
complement principles

Additive reasoning is based on quantities connected by part-
whole relations. Two essential properties of part-whole relations
are (1) the commutativity principle and (2) the complement prin-
ciple (Kilpatrick, Swafoord, & Findell, 2001). Commutativity refers
to the irrelevance of addend order to the sum, i.e. ‘aþ b¼ c’ implies
‘b þ a ¼ c’, whereas the complement principle refers to the inverse
relation between addition and subtraction, i.e. ‘aþ b¼ c’ implies ‘c -
a ¼ b’. These two prinicples are important for children to learn
mathematics because they contribute to (1) the understanding of
the nature of number, (2) computational fluency, and (3) the ablity
to solve problems in a variety of situations.

Piaget (1952) argues that numbers are not simply a set of words
in a fixed order, but they also reflect the part-whole logic of the
number system. For example, the mastery of additive reasoning
involves the integration of the commutativity and complement
prinicples. One should understand that three quantities e.g.,
3 þ 4 ¼ 7 can be expressed in four mathematical relations, e.g.,
7e3 ¼ 4, 4 þ 3 ¼ 7, 7e4 ¼ 3, and 3 þ 4 ¼ 7, and that these four
expressions can be deduced from each other. A thorough under-
standing of the part-whole relations of quantities involves the
recognition that these expressions are essentially describing the
same relation.

The conceptual understanding of these two prinicples may
contribute to children's computational fluency (Baroody et al.,
2009; Canobi, 2004; Canobi et al., 2003; Nunes, Bryant, Hallett,
Bell, & Evans, 2009). It has been suggested that this understand-
ing may form the basis for children to develop more advanced
computational strategies that help themmodify complex problems
to make them easier to solve (Canobi, 2004; Canobi et al., 2003;
Fuson, 1990; Nunes & Bryant, 1996, 2015). For example, some effi-
cient strategies (Gaschler, Vatterodt, Frensch, Eichler, & Haider,
2013; Shrager & Siegler, 1998), such as counting-all starting with
the larger addend (CAL) and counting-on from the larger addend
(COL), require the knowledge that the order of numbers does not
affect the outcome in addition (i.e. the commutativity principle).
The understanding of the commutativity principle may also foster
the development of other strategies, such as the ‘ten-strategy’ and
‘addends-compare strategy’. For example, children who grasp the
commutativity principle can transform the problem ‘3 þ 6 þ 7’ into
‘(3 þ 7) þ 6’ that is easier to solve (the ten-strategy). For some
arithmetic problems, children do not need to calculate if they
recognise that the identical addends that had been shown (though
in different order e.g., ‘2þ 7þ 8’) in a previous problem had already
been solved e.g., ‘8 þ 7 þ 2’. This addends-compare strategy may
also require the understanding of the commutativity principle
(Gaschler et al., 2013). An understanding of the inversion principle
may also facilitate the use of ‘indirect addition’ in which children
can use additions to solve subtraction problems effectively if the
numbers are close to each other. For example, to solve ‘21e18’, it is
less likely to make mistakes if they count up from 18 to 21. Some
researchers have suggested that the complement principle con-
tributes to the mastery of basic subtraction combinations (Baroody,
1983, 1984, 1985, 1999; Baroody & Ginsburg, 1986; Baroody,
Ginsburg, & Waxman, 1983; Fuson, 1988, 1992; Putnam,
deBettencourt, & Leinhardt, 1990).

Understanding the commutativity and complement prinicples
may also help children solve problems in a variety of situations. The
solution to many story problems relies on the knowledge of the

underlying relations between the quantities in the problem.
Sometimes the relations are not obvious to problem solvers,
especially when those problems whose solutions rest on the un-
derstanding of the inverse relation between addition and subtrac-
tion. For instance, children may not find a Change problem difficult
when the missing information is the result of the change (e.g.,
‘David had 8 books. Then Peter gave him 3 more books. How many
books does David have now?’). It is because the action in the story
and the arithmetic operation required to solve the problem are
consistent e A problem that involves a change that increases the
quantitiy can be solved by addition, whereas one that decreases the
quantity can be solved by subtraction. In contrast, when the start-
ing situation is not known (e.g., ‘Alex had some cookies. He gave 3
cookies to his mother and had 8 cookies left. Howmany cookies did
he have before?’), problem solvers have to decide which arithmetic
operation to use based on the information about the change and its
end result. These start-unknown problems are more difficult (e.g.,
Carpenter, Hiebert, & Moser, 1981; De Corte & Verschaffel, 1987;
Ginsburg, 1982) because the relation between the action
described in the story and the operation is inverse, i.e., A problem
that involves a change that decreases the quantity has to be solved
by addition. Studentsmust understand that the operation ‘addition’
can be conceived as the inverse of ‘subtraction’ and analyse the
quantitative relations underlying the problem situation.

Knowledge of the commutativity principle may also relate to
children's solving somemissing addend problems (Nunes& Bryant,
2015). Consider this example ‘Jane had 3 cookies, got some more
and now has 7. How many more cookies did she get?’ Children can
easily solve this problem by representing the first addend with 3
fingers, counting up to the final state i.e. 7 fingers, and evaluated
how many fingers they had to add in the process. However, if the
problem has the first rather than the second addend missing e.g.,
‘Jane had some cookies; her mother gave her 4 more and now she
has 7; how many did she have to start with?’ the children have to
understand that the order does not affect the total. Those who
understand the commutativity principle can start from the second
addend i.e. 4, add up to 7, and count how many were added. Chil-
dren who do not understand commutativity may find this problem
difficult to solve because they do not know how many cookies Jane
to start with.

1.2. Using concrete materials to facilitate understanding

Given the importance of understanding the commutativity and
complement principles in mathematics learning, we should iden-
tify ways to help children learn these principles. Some theorists and
evidence suggest that young children can obtain cognitive benefits
from exploring mathematical concepts with concrete materials
(Bruner, 1960; Bryant et al., 1999; Gilmore & Papadatou-Pastou,
2009; Hughes, 1981; Piaget & Inhelder, 1975; Resnick, 1992;
Vygotsky, 1962). Classic developmental theories contend that the
acquisition of symbolic competence proceeds through a concrete-
to-abstract shift: The progression from thinking that is based on
concrete reality to thinking that is less constrained by context. For
example, Piaget (1952) postulates that the development of the
ability to reason with abstract hypothetical propositions without
the help of more concrete information was the final stage of
cognitive development. Piaget observed that children at the con-
crete operational stage had difficulty in reasoning about false
propositions that included relations that could not happen in the
real world.

Other popular theories have also seen development in terms of a
transition from concrete to abstract. For example, in research of
early categorization, Bruner (1966) argues that conceptual devel-
opment is a perceptual-to-conceptual shift. At first, children can
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