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a b s t r a c t

For constrained optimization problems set in a continuous space, feasible regions might be disjointed
and the optimal solution might be in any of these regions. Thus, locating these feasible regions (ideally
all of them) as well as identifying the most promising region (in terms of objective value) at the end of
the optimization process would be of a great significance. In this paper a time-adaptive topology is
proposed that enables a variant of the particle swarm optimization (PSO) to locate many feasible regions
at the early stages of the optimization process and to identify the most promising one at the latter stages
of the optimization process. This PSO variant is combined with two local searches which improve the
ability of the algorithm in both finding feasible regions and higher quality solutions. This method is
further hybridized with covariance matrix adaptation evolutionary strategy (CMA-ES) to enhance its
ability to improve the solutions at the latter stages of the optimization process. Results generated by this
hybrid method are compared with the results of several other state-of-the-art methods in dealing with
standard benchmark constraint optimization problems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A constrained optimization problem (COP) in a continuous
space is formulated as follows:

Find xASDRD such that

8yAℱ f ðxÞr f ðyÞ ðaÞ
giðxÞr0; for i¼ 1 to q ðbÞ
hiðxÞ ¼ 0; for i¼ 1 to p ðcÞ

8><
>: ð1Þ

In this formulation, f, gi, and hi are real-valued functions defined
on the search space S, q is the number of inequalities, and p is the
number of equalities. The search space S is defined as a D
dimensional rectangle in RD such that lðjÞrxðjÞruðjÞ, j¼1,…, D
(lðjÞ and uðjÞ are the lower and upper bounds of the jth variable).
The set of all feasible points which satisfy constraints (b) and
(c) are denoted by ℱ [1]. Usually in COPs, equalities are replaced
by inequalities [2] as follows:

jhiðxÞjrξ; for i¼ 1 to p ð2Þ

where ξ is a small positive value. In all experiments reported in
this paper, the value of ξ is equal to 1E�4, the same as it was
adopted in [2,3]. Accordingly, by considering giþqðxÞ ¼ jhiðxÞj�ξ for

all 1r irp, the COP defined in Eq. 1 can be written as

Find xASDRD such that
8yAℱ f ðxÞr f ðyÞ ðaÞ
giðxÞr0; for i¼ 1 to qþp ðbÞ

(
ð3Þ

From now on, the term COP refers to this formulation.
Any method that deals with a COP consists of two parts: an

optimization algorithm and a constraint handling technique (CHT).
The optimization algorithm can be particle swarm optimiza-
tion (PSO) [4], genetic algorithm (GA) [5], differential evolution
(DE) [6], covariance matrix adaptation evolutionary strategy
(CMA-ES) [7], conjugate gradient [8], linear programming [9],
etc. However, whatever the optimization algorithm is, evaluation
of individuals is one of the challenges in solving COPs [10]. Indeed,
unlike unconstrained optimization problems in where evaluation
is simply done based on the value of the objective function for
each individual, evaluation procedure for COPs includes some
complexities because it is necessary to consider both constraints
and objective value (see [11] for detailed discussion on this
complexity). There are several categories of techniques in handling
constraints that can be incorporated into optimization algo-
rithms [12]; these categories include: penalty functions, special
operators, repairs, decoders, and hybrid techniques (see also [1]
and [10] for details).

Particle Swarm Optimization (PSO) [13] is a population based
optimization algorithm of n41 particles (referred to as swarm);
each particle is defined by three D-dimensional vectors
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� Position ( x!i
t) – is the position of the ith particle in the tth

iteration. This is used to evaluate the particle's quality.
� Velocity ( v!i

t) – is the direction and length of movement of the
ith particle in the tth iteration.

� Personal best ( p!i
t) – is the best position1 that the ith particle

has visited in its lifetime (up to the tth iteration). This
vector serves as a memory for keeping knowledge of quality
solutions [4].

All of these vectors are updated at every iteration t for each
particle (i)

v!i
tþ1 ¼ μð x!i

t ; v
!ti; Ni

tÞ for all i ð4Þ

x!i
tþ1 ¼ ξð x!i

t ; v
!i

tþ1Þ for all i ð5Þ
In Eq. 4, Ni

t (known as neighbor set of the particle i at iteration t) is
a subset of personal best positions of some particles which
contribute to the velocity updating rule of that particle at iteration

t, i.e. Ni
t ¼ f p!k

t jkAfTi
tDf1;2;…;nggg where Tt

i is a set of indices of
particles which contribute to the velocity updating for particle i at
iteration t. Clearly, the strategy of determining Tt

i might be
different for various types of PSO algorithms and it is usually
referred to as the topology of the swarm. Many different topologies
have been defined so far [14], e.g., global best topology (gbest),
ring topology, non-overlapping, pyramid, and adaptive topology,
that are discussed later in this paper. The function μð:Þ calculates
the new velocity vector for particle i according to its current

position, current velocity v!i
t , and neighborhood set Ni

t . In Eq. 5,
ξð:Þ is a function which calculates the new position of the particle i
according to its previous position and its new velocity. Usually

ξð x!i
t ; v
! i

tþ1Þ ¼ x!i
tþ v!i

tþ1 is accepted for updating the position of
particle i. After updating velocity and positions, the personal best
vector (p- i

t) of the particles is also updated.

p!i
tþ1 ¼

p!i
t f ð p!i

tÞr f ð x!i
tþ1Þ

x!i
tþ1 otherwise

8><
>: ð6Þ

In Eq. (6), the new personal best position for the ith particle is
updated according to the objective values of its previous personal
best and the current position. In the rest of this paper, these usual
forms for the position updating rule (Eq. (5)) and for updating
the personal best (Eq. (6)) are assumed. In PSO, updating rules
(Eqs. (4) and (5)) are applied to all particles and the personal best
for all particles are updated in each iteration until a predefined
termination criterion, e.g., maximum number of iterations or
deviation from global optimum (if known), is met.

In the original version of PSO [13], the function μð�Þ in Eq. (4)
was defined as

v!i
tþ1 ¼ v!i

tþφ1R
i
1tð p

!i
t� x!i

tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Personal
Inf luence ðPIÞ

þφ2R
i
2tð g

!
t� x!i

tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Social

Inf luence ðSIÞ

ð7Þ

where φ1 and φ2 are two real numbers known as acceleration
coefficients2 and p- i

t and g-t are the personal best (of particle i)
and the global best vectors, respectively, at iteration t. Also,
the role of vectors PI¼ p- i

t�x- i
t (Personal Influence) and

SI ¼ g-t�x- i
t (Social Influence) is to attract the particles to move

toward known quality solutions, i.e. personal and global best.
Moreover, R1t and R2t are two d� d diagonal matrices3 [15,16],
where their elements are random numbers distributed uniformly
(� Uð0; 1Þ) in [0, 1]. Note that matrices R1t and R2t are generated at
each iteration for each particle separately.

In 1998, Shi and Eberhart [17] introduced a new coefficient ω
(known as inertia weight) to control the influence of the previous
velocity value on the updated velocity. Indeed, Eq. 7 was written as

v!i
tþ1 ¼ ω v!i

tþφ1R
i
1tð p

!i
t� x!i

tÞþφ2R
i
2tð g

!
t� x!i

tÞ ð8Þ

The coefficient ω controls the influence of the previous velocity
(v- i

t) on the movement of the particle (this variant is called
Standard PSO, SPSO, throughout this paper). One of the issues in
SPSO was that, for some values of the coefficients, velocity may
grow to infinity. Some studies analyzed the dynamic of the
particles to understand why velocity might grow to infinity. It
was proven that by setting the coefficients in specific boundaries,
velocity shrinks during the time and hence, it does not grow to
infinity [18–20]. In SPSO, if the random matrices are replaced by
random values then the new variant is known as linear PSO
(LPSO).

There are several well-studied issues in the standard PSO such
as stagnation [21–24], line search [25,26], and swarm size [21,22].
Apart from these issues in PSO, there have been some attempts to
extend the algorithm to work with COPs [3,27–38] and to support
niching4 [39–42]. See Section 2 for a brief review on the issues and
extensions of SPSO.

In this paper, different topologies for a PSO variant proposed in
our earlier paper [11] are analyzed and their abilities in locating
disjoint feasible regions of a COP are tested. Consequently, this
variant is extended by a new time-adaptive topology which
enables the algorithm to locate feasible regions at the early stages
of iterations and to find the region with the highest quality (in
terms of the objective function) at the latter stages of the
optimization process. Also, this extended method is combined
further with two local searches and a covariance matrix adapta-
tion evolutionary strategy (CMA-ES) [43] to improve the quality of
the found solutions. The hybrid approach is applied to standard
benchmark COPs (usually known as CEC2010 [44]) and its results
are compared with three other recently proposed approaches
[2,45,46].

The rest of this paper is organized as follows. Section 2 provides
an overview of PSO including discussion on some identified issues
of this technique, its topology, niching capabilities, and its applic-
ability for COPs. Section 3 discusses two constraint handling
methods as well as some relevant optimization methods to deal
with COPs. In Section 4 a PSO variant is extended by a new time
adaptive topology and the extended method is combined with
local searches. Experimental results are reported and analyzed in
Section 5 and Section 6 concludes the paper.

2. Particle swarm optimization

In this section we provide an overview of PSO, including issues
in the algorithm, topology, niching abilities, and its ability to deal
with COPs.

1 In general, personal best can be a set of best positions, but all PSO types listed
in this paper use single personal best.

2 These two coefficients control the effect of personal and global best vectors
on the movement of particles and they play an important role in the convergence of
the algorithm. They are usually determined by a practitioner or by the dynamic of
particles' movement.

3 Alternatively, these two random matrices are often considered as two
random vectors. In this case, the multiplication of these random vectors by PI
and SI is element-wise.

4 Niching is the ability of the algorithm to locate different optima rather than
only one of them. The niching concept is used usually in the multi-modal
optimization.
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