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This paper proposes a new version of the particle filtering (PF) algorithm based on the invasive weed
optimization (IWO) method. The sub-optimality of the sampling step in the PF algorithm is prone to
estimation errors. In order to avert such approximation errors, this paper suggests applying the IWO
algorithm by translating the sampling step into a nonlinear optimization problem. By introducing an
appropriate fitness function, the optimization problem is properly treated. The validity of the proposed

method is evaluated against three distinct examples: the stochastic volatility estimation problem in
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finance, the severely nonlinear waste water sludge treatment plant, and the benchmark target tracking
on re-entry problem. By simulation analysis and evaluation, it is verified that applying the suggested IWO
enhanced PF algorithm (PFIWO) would contribute to significant estimation performance improvements.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

State estimation plays a key role in different applications such
as fault detection, process monitoring, process optimization, and
model based control techniques [1]. Fortunately, a large group of
models in signal processing can be represented by a state-space
form in which prior knowledge of the system is available. This prior
knowledge allows us to exploit a Bayesian estimation approach.
Within this statistical framework, one can perform inference on
the unknown states according to the posterior distribution. In
most cases, the observations arrive sequentially in time, and one
is interested in recursively estimating the hidden states from the
time-varying posterior distribution. This problem is referred as
the optimal filtering problem [2,3]. Owing to the mathematical
complexity, only few specific models (including linear Gaussian
state-space models and finite state-space hidden Markov models
(HMM) [4]) can be adopted to reach an analytical solution. The
popular Kalman filter (KF) [2,3] and the renowned HMM filter [4]
provide close form solutions to the latter models.

In many real-life applications, however, the models possess
nonlinearity and non-Gaussian behavior. Thus, an optimal solution
to the filtering problem cannot be attained. In this case, it becomes
necessary to exploit approximate and computationally traceable
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sub-optimal solutions to the sequential Bayesian estimation
methodology. Over the past decades, several sub-optimal filtering
methods such as the extended Kalman filter (EKF), and the
unscented Kalman filter (UKF) have been proposed in the open
literature [5]. But, these filtering algorithms suffer from the curse
of dimensionality; that is, they perform poorly as the dimension of
the model states increases. Furthermore, the rate of convergence
of the approximation error decreases dramatically for large state
dimensions, say 4 [5]. Notably, it has been demonstrated that
the estimation performance of UKF inhibits intrinsic limitations.
In other words, the deterministic choice of the so called sigma
points confines the flexibility desired to construct a probability
distribution.

The particle filter (PF), first brought forward by Gordon et al. [6],
employs a set of N random samples (or particles) to approximate
the posterior distribution. The particles are evolved over time via
a combination of importance sampling and re-sampling steps. In
a few words, the re-sampling step statistically multiplies and/or
discards particles at each time step to adaptively concentrate
particles in the regions of high posterior probability [7]. The
popularity of the PF results from the notion that it does not call
for model simplification or adopting special distributions.

Recently, researchers have shown an increased interest in
the subject of integrating meta-heuristic algorithms in PF. In
a seminal paper, Tong et al. [8] proposed an optimized PF
based on particle swarm optimization (PSO) algorithm [9] which
demonstrated improved estimation accuracy. Many subsequent
studies also followed the same trend using PSO; e.g., refer
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to [10,11]. In [10], the authors exploited a similar method based
on PSO for visual tracking, and claimed that the modified scheme
has better accuracy than the conventional PF. Later, Jing et al. [11]
further advanced the algorithm brought forward in [8] with a
new re-sampling strategy. However, to authors’ knowledge, there
has been very little discussion on developing other meta-heuristic
based PF algorithms, thus far. The studies reported to date have
focused on adjusting the PSO enhanced PF algorithm rather than
incorporating other techniques established upon evolutionary
algorithms and swarm intelligence.

The bio-inspired IWO algorithm was introduced by Mehrabian
and Lucas [12] which imitates the colonial behavior of invasive
weeds in nature. The IWO algorithm has shown to be virtu-
ous in converging to optimal solution by employing some basic
characteristics of weed colonization, e.g. seeding, growth and com-
petition. In [13], Chakraborty et al. investigated the search per-
formance and specifically the effect of population variance on the
explorative power of the algorithm. Later, Roy et al. [ 14] proposed
a hybrid optimization algorithm by integrating the optimal forag-
ing theory in IWO which evinced improved optimization capac-
ity. Previously, the IWO algorithm has been utilized in a surfeit
of applications including optimizing and tuning of a robust con-
troller [12], antenna configuration optimization [15], optimal ar-
rangement of piezoelectric actuators on smart structures [ 16], DNA
computing [17], and etc.

This paper considers the implementation of the IWO algorithm
as a mean to optimize the PF method. Since sampling in PF is
carried out in a sub-optimal manner, it can bring about some
performance defects such as sample impoverishment [5]. By
introducing a suitable fitness function for particles, such problems
are circumvented and an enhanced PF algorithm is achieved
thanks to the IWO approach. The functionality of the combined
method is verified using three nonlinear state estimation problems
from different fields: volatility estimation of a stock market, state
estimation of a nonlinear chemical process, and the re-entry
vehicle tracking problem.

The rest of this paper is organized as follows. Section 2 provides
a concise description of some preliminary notions including the
filtering problem, the Monte Carlo method, Importance Sampling,
and the basic particle filtering algorithm. The IWO algorithm is
limned in Section 3. The proposed PFIWO method is discussed in
Section 4. Simulation Results based on the PFIWO algorithm and
some discussions are outlined in Section 5. Section 6 concludes the

paper.
2. Preliminaries
2.1. The filtering problem

Consider the general class of nonlinear non-Gaussian systems
with state-space model as described below

X = f(Xk—1, Ug—1, Vk—1), Xk ~ P(XilXk—1) (1a)
Yk = Xk, Uk, wi), Yk ~ PWklXe), (1b)

where the subscript k denotes the time instance. x, € R™ represent
the system states with probability distribution of p(xi|x¢_1) which
is not directly measurable, and y, € R" is the noise corrupted
observation with likelihood p(yk|x¢). The maps f € R™ x R™ x
R™ — R™and g € R™ x R™ x R™ — R are generally nonlinear
functions. u stands for known inputs. v and w represent the process
and measurement noise, respectively. The overall structure is
illustrated in Fig. 1. Filteringis the task of sequentially estimating
the states (parameters or hidden variables) of a system as a set
of observations become available on-line [2,3]. Strictly speaking,
filtering is aimed at estimating the posterior distribution p(xk|yx)
as a set of observations Yy = (y1, 2, ..., yi)" arrives. It is worth
noting that the results obtained in this section are established upon
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Fig. 1. A graphical representation of the state-space model described by Eq. (1).
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Fig. 2. The Bayesian approach to the filtering problem.

the following assumptions:

1. The states follow a first order Markov process, i.e., Xg|Xk—1 ~
DPxilxi_ (Xk|Xk—1) with an initial distribution of p(xo).

2. The measurements are conditionally independent given the
states, i.e., each y, only depends on xj.

The Bayesian solution to the filtering problem consists of two
stages [2,3,5]:

1. Prediction: let the above assumptions hold. Using the prior
density function, and the Chapman-Kolmogorov equation we
have

pelyk—1) = /P(Xk|xk—1)P(Xk—1|J/k—1)dxk—1- (2)
2. Correction: based on the Bayes’ formula

PVilx)p Xk Y1)

— TrrRr R 3
p(Xklyk) p(‘ylc|}’l<71) ( a)
wherein
PVklyk—1) = /P(Vk|xk)P(Xk|Yk—1)ka~ (3b)

The algorithm is initialized with p(xg|yo) = p(Xo) and p(x1|yo) =
p(x1). One step operation of the Bayesian filtering is portrayed in
Fig. 2. However, it is obvious that achieving a closed form analytical
solution to the untraceable integral in Eq. (2) and therefore the
solution to Eq. (3) is a cumbersome task. The problem becomes
even more severe as the state dimensions increase. Thus, an
optimal solution cannot be attained except under very restricting
conditions (linear transition functions and Gaussian noise) using
the well-known KF. The interested reader can refer to [2,3] which
provide a comprehensive theoretical overview of available optimal
methods. Sub-optimal solutions exist for rather general models
with nonlinear evolution functions and non-Gaussian noises.
Nevertheless, due to the nature of these methods (e.g. EKF and UKF)
which are based on local linearization, the estimation performance
is, more or less, limited. Estimation techniques established upon
sequential Monte Carlo methods, namely the PF, are a promising
alternative to local linearization algorithms [6,18].

2.2. Monte Carlo and importance sampling techniques

In the Monte Carlo technique, one is concerned with estimating
the properties of some highly complex probability distribution
p(x), e.g. expectation

E(s(x)) = / s(X)p(x)dx (4)

where s(x) is some useful function for estimation. In cases where
this cannot be obtained analytically, the approximation problem
can be handled indirectly. It is possible to represent p(x) by a set
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