Measurement and resonance analysis of the ²³⁷Np neutron capture cross section

C. Guerrero,^{1,2} D. Cano-Ott,¹ E. Mendoza,¹ U. Abbondanno,³ G. Aerts,⁴ F. Álvarez-Velarde,¹ S. Andriamonje,⁴ J. Andrzejewski,⁵ P. Assimakopoulos,⁶ L. Audouin,⁷ G. Badurek,⁸ P. Baumann,⁹ F. Becvár,¹⁰ F. Belloni,³ E. Berthoumieux,⁴ F. Calviño,¹¹ M. Calviani,^{12,13} R. Capote,^{14,15} C. Carrapiço,^{16,4} A. Carrillo de Albornoz,¹⁶ P. Cennini,² V. Chepel,¹⁷ E. Chiaveri,² N. Colonna,¹⁸ G. Cortes,¹⁹ A. Couture,²⁰ J. Cox,²⁰ M. Dahlfors,² S. David,⁷ I. Dillmann,²¹ R. Dolfini,²² C. Domingo-Pardo,²³ W. Dridi,⁴ I. Duran,²⁴ C. Eleftheriadis,²⁵ M. Embid-Segura,¹ L. Ferrant,⁷ A. Ferrari,² R. Ferreira-Marques,¹⁷ L. Fitzpatrick,² H. Frais-Koelbl,²⁶ K. Fujii,³ W. Furman,²⁷ I. Goncalves,¹⁶ E. González-Romero,¹ R. Felfelfa-Marques, ⁵ L. Fitzpatrick,⁵ H. Frais-Koetol,⁵ K. Fujil,⁵ W. Fufilia,⁴ I. Goncarves,⁵ E. Gonzalez-Kontero,⁷
A. Goverdovski,²⁸ F. Gramegna,¹² E. Griesmayer,²⁶ F. Gunsing,⁴ B. Haas,²⁹ R. Haight,³⁰ M. Heil,²¹ A. Herrera-Martinez,²
M. Igashira,³¹ S. Isaev,⁴ E. Jericha,⁸ F. Käppeler,²¹ Y. Kadi,² D. Karadimos,⁶ D. Karamanis,⁶ V. Ketlerov,^{28,2} M. Kerveno,⁹
P. Koehler,³² V. Konovalov,^{27,2} E. Kossionides,³³ M. Krtička,¹⁰ C. Lampoudis,^{25,4} H. Leeb,⁸ A. Lindote,¹⁷ I. Lopes,¹⁷
R. Lossito,² M. Lozano,¹⁵ S. Lukic,⁹ J. Marganiec,⁵ L. Marques,¹⁶ S. Marrone,¹⁸ T. Martínez,¹ C. Massimi,³⁴ P. Mastinu,¹² A. Mengoni,^{14,2} P. M. Milazzo,³ C. Moreau,³ M. Mosconi,²¹ F. Neves,¹⁷ H. Oberhummer,⁸ S. O'Brien,²⁰ M. Oshima,³⁵ A. Mengolii, ¹⁴ P. M. Milazzo, C. Moleau, M. Moscolii, ¹⁴ P. Neves, ¹⁴ Oberhulminer, ³⁵ O Brien, ¹⁴ M. Ostilina, ¹⁵ J. Pancin,⁴ C. Papachristodoulou,⁶ C. Papadopoulos,³⁶ C. Paradela,²⁴ N. Patronis,⁶ A. Pavlik,³⁷ P. Pavlopoulos,³⁸ L. Perrot,⁴ M. T. Pigni,⁸ R. Plag,²¹ A. Plompen,³⁹ A. Plukis,⁴ A. Poch,¹⁹ J. Praena,¹² C. Pretel,¹⁹ J. Quesada,¹⁵ T. Rauscher,⁴⁰ R. Reifarth,³⁰ M. Rosetti,⁴¹ C. Rubbia,²² G. Rudolf,⁹ P. Rullhusen,³⁹ J. Salgado,¹⁶ C. Santos,¹⁶ L. Sarchiapone,² I. Savvidis,²⁵ C. Stephan,⁷ G. Tagliente,¹⁸ J. L. Tain,²³ L. Tassan-Got,⁷ L. Tavora,¹⁶ R. Terlizzi,¹⁸ G. Vannini,³⁴ P. Vaz,¹⁶ A. Ventura,⁴¹ D. Villamarin,¹ M. C. Vicente,¹ V. Vlachoudis,² R. Vlastou,³⁶ F. Voss,²¹ S. Walter,²¹ H. Wendler,² M. Wiescher,²⁰ and K. Wisshak²¹ (n TOF Collaboration) ¹CIEMAT, Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-Madrid, Spain ²CERN, CH-Geneva, Switzerland ³Istituto Nazionale di Fisica Nucleare, I-Trieste, Italy ⁴CEA/Saclay–IRFU, F-Gif-sur-Yvette, France ⁵University of Lodz, PL-Lodz, Poland ⁶University of Ioannina, GR-Ioannina, Greece ⁷Centre National de la Recherche Scientifique/IN2P3–IPN, F-Orsay, France ⁸Atominstitut der Österreichischen Universitäten, Technische Universität Wien, A-Wien, Austria ⁹Centre National de la Recherche Scientifique/IN2P3–IReS, F-Strasbourg, France ¹⁰Charles University, CZ-Prague, Czech Republic ¹¹Universidad Politecnica de Madrid, E-Madrid, Spain ¹²Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy ¹³Dipartimento di Fisica, Università di Padova, I-35122 Padova, Italy ¹⁴International Atomic Energy Agency (IAEA), Nuclear Data Section, A-1400 Vienna, Austria ¹⁵Universidad de Sevilla, E-41004 Sevilla, Spain ¹⁶Instituto Tecnológico e Nuclear (ITN), P-Lisbon, Portugal ¹⁷LIP - Coimbra & Departamento de Fisica da Universidade de Coimbra, P-Coimbra, Portugal ¹⁸Istituto Nazionale di Fisica Nucleare, I-Bari, Italy ¹⁹Universitat Politecnica de Catalunya, E-Barcelona, Spain ²⁰University of Notre Dame, Notre Dame, Indiana 46556, USA ²¹Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, D-Karlsruhe, Germany ²²Università degli Studi Pavia, I-Pavia, Italy ²³Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-Valencia, Spain ²⁴Universidade de Santiago de Compostela, E-Santiago de Compostela, Spain ²⁵Aristotle University of Thessaloniki, GR-Thessaloniki, Greece ²⁶Fachhochschule Wiener Neustadt, A-Wiener Neustadt, Austria ²⁷ Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Russia ²⁸Institute of Physics and Power Engineering, Kaluga region, Obninsk, Russia ²⁹Centre National de la Recherche Scientifique/IN2P3–CENBG, F-Bordeaux, France ³⁰Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ³¹Tokyo Institute of Technology, Tokyo, Japan ³²Oak Ridge National Laboratory, Physics Division, Oak Ridge, Tennessee 37831, USA ³³NCSR, GR-Athens, Greece ³⁴Dipartimento di Fisica, Università di Bologna, and Sezione INFN di Bologna, I-Bologna, Italy ³⁵Japan Atomic Energy Research Institute, Tokai-mura, Japan ³⁶National Technical University of Athens, GR-Athens, Greece ³⁷Institut für Isotopenforschung und Kernphysik, Universität Wien, A-Wien, Austria ³⁸Pôle Universitaire Léonard de Vinci, F-Paris La Défense, France ³⁹CEC-JRC-IRMM, B-Geel, Belgium

⁴⁰Department of Physics–University of Basel, CH-Basel, Switzerland
⁴¹ENEA, I-Bologna, Italy

(Received 28 November 2011; revised manuscript received 7 February 2012; published 20 April 2012)

The neutron capture cross section of ²³⁷Np was measured between 0.7 and 500 eV at the CERN n_TOF facility using the 4π BaF₂ Total Absorption Calorimeter. The experimental capture yield was extracted minimizing all the systematic uncertainties and was analyzed together with the most reliable transmission data available using the SAMMY code. The result is a complete set of individual as well as average resonance parameters [$D_0 = 0.56(2)$ eV, $\langle \Gamma_{\gamma} \rangle = 40.9(18)$ meV, $10^4S_0 = 0.98(6)$, R' = 9.8(6) fm]. The capture cross section obtained in this work is in overall agreement with the evaluations and the data of Weston and Todd [Nucl. Sci. Eng. **79**, 184 (1981)], thus showing sizable differences with respect to previous data from Scherbakov *et al.* [J. Nucl. Sci. Technol. **42**, 135 (2005)] and large discrepancies with data Kobayashi *et al.* [J. Nucl. Sci. Technol. **39**, 111 (2002)]. The results indicate that a new evaluation combining the present capture data with reliable transmission data would allow reaching an accuracy better than 4%, in line with the uncertainty requirements of the nuclear data community for the design and operation of current and future nuclear devices.

DOI: 10.1103/PhysRevC.85.044616

PACS number(s): 25.40.Lw, 28.41.-i, 28.20.Np, 27.90.+b

I. INTRODUCTION

Neutron capture cross sections of minor actinides have gained importance in the last decade because of their key role in the design and performance of advance reactors and transmutation devices for the incineration of radioactive nuclear waste. At present, the uncertainties on such nuclear data are probably acceptable in the early phases of design feasibility studies, but in many cases the accuracies are not sufficient for the design optimization phase in which economical and safety margins are to be minimized [1-3,21].

In particular, nuclear data for ²³⁷Np are of utmost importance because it is the most abundant minor actinide in the spent fuel of a commercial LWR reactor and would be responsible for the largest number of capture reactions among the minor actinides present in the core of an accelerator driven system (ADS). A detailed investigation of the results from previous capture [5-11], fission [6,12,13], and total [6,7,12–14] cross section measurements reveals significant discrepancies between experiments. Indeed, the recommended ²³⁷Np evaluations do not result from the combination of several data sets as it is always desirable; instead, individual data sets are selected for each reaction channel and each neutron energy range. In particular, in the resolved resonance region the neutron and capture widths in the JENDL-4.0 evaluation are from a single transmission measurement by Gressier et al. [14] while the capture cross section in the unresolved resonance region is directly that from the measurement by Weston and Todd [8]. In the case of JEFF-3.1 and ENDF/B-VII.1 the resonance parameters range only up to 150 eV and are taken directly from the work of Paya [12]. Only recently, a work by Noguere [15] has combined the most recent capture and transmission data; however, high-resolution data exist only up to 100 eV, with only one data set (Weston and Todd [8]) available between 10 and 100 eV. Therefore, the results above 100 eV are based only on transmission.

The n_TOF facility provides the means for high-resolution time-of-flight measurements of capture and fission reactions, and both cross sections have been measured for the case of 237 Np using the Total Absorption Calorimeter (TAC) [16] and the PPAC detectors [17], respectively. This paper is devoted

to the measurement and analysis of the capture data measured with the TAC, which has provided for the first time capture data with enough resolution to study resonances above the previous 100-eV limit. The details of the experiment and data reduction are given in Secs. II and III, respectively. The resonance and cross-section analysis presented in Sec. IV combines the experimental capture yield with the most reliable transmission data available at the time of this work. The results are discussed and compared to previous evaluations and experiments in Sec. V.

II. CROSS-SECTION MEASUREMENT

A. The n_TOF facility at CERN

The n_TOF (Phase-1) facility [18,19] is part of the fixed target experimental program at CERN. At n_TOF a high-intensity neutron pulse is produced every 2.4 s from spallation reactions induced by a 20-GeV/c proton beam incident on a $80 \times 80 \times 60 \text{ cm}^3$ lead target. A water layer of 58 mm cools down the target and moderates the initially fast neutron energy distribution.

The result at the irradiation position (185 m) is a high instantaneous intensity neutron beam that covers the energy range from thermal to relativistic energies with a nearly isolethargic distribution between 1 eV and few tens of keV. A neutron flux of 5×10^5 neutrons/cm² between thermal and 10 MeV is produced by each proton pulse of the nominal intensity 7×10^{12} protons.

The precise energy dependence of the neutron fluence in the energy range of this work (1–500 eV) was determined from measurements [38] with the ⁶Li-based silicon monitor *SiMon* that results in an evaluated shape of the neutron flux with an accuracy better than 2% in the region below a few keV. Regarding the spatial profile of the neutron beam, two collimators placed along the neutron beam line provide a nearly symmetric Gaussian-shaped profile at the sample position. In the eV region the width of this Gaussian profile is ~5 mm, yielding a total diameter of ~4 cm [20].

The combination of the high intensity and wide energy range of the neutron beam with *state-of-the-art* detectors and

Download English Version:

https://daneshyari.com/en/article/4940595

Download Persian Version:

https://daneshyari.com/article/4940595

Daneshyari.com