
Sustainable Computing: Informatics and Systems 4 (2014) 151–159

Contents lists available at ScienceDirect

Sustainable Computing:  Informatics  and  Systems

jou rn al hom ep age: www.elsev ier .com/ locate /suscom

Temperature  aware  online  scheduling  for  throughput  maximisation:
The  effect  of  the  cooling  factor

Martin  Birks,  Stanley  P.Y.  Fung ∗

Department of Computer Science, University of Leicester, Leicester LE1 7RH, United Kingdom

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 31 January 2013
Received in revised form 18 May  2014
Accepted 4 July 2014

Keywords:
Online algorithms
Scheduling
Competitive analysis
Temperature

a  b  s  t  r  a  c  t

We  consider  the  problem  of  scheduling  jobs in  processors  with  temperature  constraints.  In our model,
unit-length  jobs  arrive  over  time,  each  with  a deadline  and a  heat  contribution.  The  objective  is  to max-
imise  the total  number  of  completed  jobs while  keeping  the  processors  within  a given temperature
threshold.  Our  main  result  is  the  analysis  of a large  class  of ‘reasonable’  algorithms.  We  analyse  the  com-
petitive ratio  of  these  algorithms  as  a function  of the cooling  factor of the  processors.  Then  we  present  a
lower  bound  for the problem  that  shows  that  these  algorithms  are  optimal  in the  case  of  a  single processor.
We  give  some  other  lower  bounds  for the multiple  processors  case.  Then  we  perform  some  computational
experiments  to investigate  the  performance  of  the  algorithms  in an average  case  sense,  bringing  some
interesting  observations  about  the  performance  of  the  algorithms  with  respect  to  the  cooling  factor.

© 2014 Elsevier  Inc.  All  rights  reserved.

1. Introduction

1.1. Background

Advances in microprocessor technology have given a huge
increase in processing power in computing devices. Moreover, the
need for mobile and embedded devices means that these comput-
ing units are packed inside an even smaller space. These together
give significant problems to thermal management in microproces-
sors. High temperatures are a problem for many reasons, such as
negatively affecting system reliability, shortening processor life-
span, and incurring higher cooling costs. Some of these factors form
a positive feedback loop (e.g. high temperature lead to higher ‘leak-
age power’, which in turn lead to even higher temperature) which
makes them particularly difficult to handle. See e.g. [7,12] for a dis-
cussion of these problems. A lot of research work has been done
to address these issues. A recent survey [12] gave an excellent and
accessible account on the many aspects of thermal issues in micro-
processor design and scheduling. While the problem can be tackled
on a micro-architecture level, it has also become apparent that algo-
rithmic techniques can be used to manage temperature and energy;
see e.g. the survey in [11].

∗ Corresponding author. Tel.: +44 1162523807.
E-mail addresses: mbirks@gmail.com (M.  Birks), pyfung@mcs.le.ac.uk

(S.P.Y. Fung).

The temperature created by a processor is related to its power
use as well as its cooling mechanism. Power usage is a convex func-
tion of processor speed (see e.g. [11]), so one way of controlling the
temperature is to slow down the processor when the temperature
gets too high; this is known as dynamic voltage scaling (DVS). Algo-
rithms using DVS have been designed and analysed in [1]. These
algorithms are competitive in minimising the maximum temper-
ature. However, many devices have a temperature threshold that
cannot be exceeded without causing problems or even permanent
failure. It is therefore more useful in some cases to give a fixed tem-
perature threshold that cannot be exceeded, and then maximise
throughput subject to this threshold. This is the model we  consider
in this paper. Note that unlike DVS we  consider that the speed of
the processor is fixed, although as can be seen later we may need to
insert idle time steps which in some sense is similar to reducing the
speed of the processor. As for cooling, we follow the model in [1]
and Fourier’s Law, which states that the rate of cooling is propor-
tional to the difference between the temperature of the processor
and its environment, and that the environment’s temperature is
assumed to be constant.

Multicore processors have become increasingly popular over
recent years. One of the main motivations of using multicore pro-
cessors is that it is a useful tool in coping with the heat a processor
generates (see e.g. [9] and references therein). A result of power
usage being a convex function of processor speed is that it is more
power (and therefore temperature) efficient to run several process-
ors at a lower speed, than it is to run one processor at a high speed
and still carry out the same amount of work.

http://dx.doi.org/10.1016/j.suscom.2014.07.006
2210-5379/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.suscom.2014.07.006
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2014.07.006&domain=pdf
mailto:mbirks@gmail.com
mailto:pyfung@mcs.le.ac.uk
dx.doi.org/10.1016/j.suscom.2014.07.006


152 M. Birks, S.P.Y. Fung / Sustainable Computing: Informatics and Systems 4 (2014) 151–159

Fig. 1. An example execution with 4 jobs with heats h1, . . .,  h4. The line segments
represent their availability (from release time to deadline). Here R = 2. Suppose in
the first step job 1 is executed. Then in the next step job 3 is too hot to execute
(its execution will result in a temperature of (0.4 + 1.8)/2 = 1.1), so job 2 is executed
instead. Job 3 is still too hot to run in the next step so the processor idles. In fact it
is  still too hot for the next two  steps as well.

1.2. Our model

We  consider a simplified model with unit-length jobs, where
each job j has a release time rj, a deadline dj and a heat contribution
hj. All release times and deadlines are integers. The jobs arrive online
which means that the algorithm will not know anything about the
job until it is released and so cannot use information regarding
future jobs to make any scheduling decisions. Once a job arrives,
all these parameters are known to the algorithm.

An algorithm has access to m ≥ 1 identical processors. Time is
divided into discrete unit-length time steps. At each time step [t,
t + 1) the algorithm takes a decision for each processor deciding
whether to schedule a job on that processor, and if so which job. (For
simplicity, instead of saying [t, t + 1) we will just say the algorithm
schedules a job at time t.)

Every processor has a separate temperature. For simplicity, we
assume there is no heat transfer between different processors. It has
been suggested that such lateral heat transfer is much smaller than
vertical heat transfer (see e.g. [15,10] and the discussion therein),
and such consideration would require information of the physical
layout of the processing units. Thus the temperature of each proces-
sor is determined independently. If the temperature of a processor
p at a time t is �p,t, then the temperature at time t + 1 on the same
processor p is given by �p,t+1 = (�p,t + hj)/R, where j is the job sched-
uled at time t and R > 1 is the cooling factor,  which is the factor that
the temperature of a processor reduces by at the end of each time
step. If no job is scheduled then assume hj = 0. The temperature �p,t

for any processor p and at any time t must not exceed the ther-
mal  threshold T. Without loss of generality we can assume that the
initial temperature is 0 and that T is 1. See Fig. 1 for an example.

The objective is to compute a schedule that maximises the total
number of completed jobs, while staying under the thermal thresh-
old. Using standard notations this can be described as P|online-ri,
hi, pi = 1|∑Ui (where Ui = 1 if job i is completed on time and 0 oth-
erwise). We measure the performance of online algorithms using
competitive analysis [4]. An online algorithm is c-competitive if the
number of jobs completed by the algorithm is at least 1/c  of that
obtained by an offline optimal algorithm, for any input instance.

Admittedly our thermal model as described above is highly sim-
plified, but it can be seen as the limiting case of Fourier’s law when
the time steps are very small. In the systems literature there are
much more detailed thermal modelling tools available e.g. HotSpot
[14], but the more mathematical nature of our analysis requires a
simplified model.

In a real system we of course have R > 1; in the hypothetical
case of R = 1, heat were never dissipated, and the problem can be
interpreted as an energy-limited scheduling problem where each

job has a energy requirement and we  want to schedule as many of
them as possible subject to a fixed amount of energy available.

1.3. Previous results

There are so many work in the systems and processor design
community to tackle the temperature management problem, that
we cannot hope to survey them all here; see e.g. [7,15,12] and
the references therein. They range from floorplanning during the
design stage of the chip, to the dynamic scheduling of jobs by esti-
mating their heat contribution to different parts of the CPU (e.g.
register file or cache).

There are comparatively few results of analysing the problem
in the framework of online competitive algorithms. Bansal et al.
[1] considered the problem of minimising the maximum temper-
ature and gave online competitive algorithms. For the unit-length
throughput model that we consider in this paper, the main pre-
vious result was from [6], where it was  shown that a large class
of algorithms called reasonable algorithms (to be defined precisely
in the next section) are 2-competitive. A matching lower bound
on the competitive ratio was also given, showing that this class of
algorithms are optimal. They also showed that the offline case is
NP-hard. In the paper they only considered the single processor
case and also only for R = 2.

1.4. Motivation of this paper

The primary motivation of modelling the problem using unit-
length jobs is to represent the job slices given to the processor by
the operating system [6]. As such the actual cooling factor R relates
to the length of this time quantum and the ‘RC constant’ of the
processing unit (a thermal property related to how quickly the unit
cools). Different systems appear to have very different values for
these parameters (see e.g. [13]), and it is therefore important that
we can design and analyse algorithms for different values of R. For
example, [13,5] reported that typical OS scheduler ticks �t ranges
from several to 10 ms,  and the thermal time constant � (vertical
direction) ranges from tens to hundreds of milliseconds. Following
the model in [15], these values translate into different values of R,
e.g. if both �t  and � = 10 ms  then R = 2 whereas if �t  = 10 ms  and �
= 100 ms  then R = 1.1.

The use of multiple cores means that algorithms have more deci-
sions to make when scheduling jobs, which can increase the scope
for increasing the quality (or if the decisions are made poorly, then
decreasing the quality) of the schedules produced. As one of the
main motivations for using multiple processors was in an effort to
reduce heat issues, it follows that it is important to maximise the
extra capabilities that multicore systems provide. This means that
the design and analysis of temperature aware algorithms for multi-
core systems is needed in order that these systems can reach their
full potential.

1.5. Our results

In this paper we  consider the case where the cooling factor can
be any R > 1 and there can be any number of processors. We first
show an upper bound for reasonable algorithms, for any R > 1 and
any m ≥ 1. We  then give a lower bound that shows that reasonable
algorithms are in fact optimal for all values of R when m = 1. For
m ≥ 2 we give some weaker lower bounds. The results show how
the competitiveness depends on R: specifically, it increases as R gets
smaller, and tends to infinity when R tends to 1.

Our results are based on an observation on the number of jobs
that an optimal offline algorithm can execute that are too hot for the
online algorithm after it has executed a hot job. We derive the rela-
tion between this number of jobs and the cooling factor, allowing



Download English Version:

https://daneshyari.com/en/article/494081

Download Persian Version:

https://daneshyari.com/article/494081

Daneshyari.com

https://daneshyari.com/en/article/494081
https://daneshyari.com/article/494081
https://daneshyari.com

