
Survey Paper

Population-based metaheuristics for continuous boundary-constrained
dynamic multi-objective optimisation problems

Mardé Helbig a,b,n, Andries P. Engelbrecht b

a Meraka Institute, CSIR, Scientia, Meiring Naudé Road, 0184 Brummeria, Pretoria, South Africa
b Department of Computer Science, University of Pretoria, Pretoria, South Africa

a r t i c l e i n f o

Article history:
Received 12 October 2012
Received in revised form
26 August 2013
Accepted 28 August 2013
Available online 27 September 2013

Keywords:
Population-based algorithms
Dynamic multi-objective optimization
Dynamic multi-objective optimization
algorithms

a b s t r a c t

Most real-world optimisation problems are dynamic in nature with more than one objective, where at
least two of these objectives are in conflict with one another. This kind of problems is referred to as
dynamic multi-objective optimisation problems (DMOOPs). Most research in multi-objective optimisa-
tion (MOO) have focussed on static MOO (SMOO) and dynamic single-objective optimisation. However,
in recent years, algorithms were proposed to solve dynamic MOO (DMOO). This paper provides an
overview of the algorithms that were proposed in the literature to solve DMOOPs. In addition, challenges,
practical aspects and possible future research directions of DMOO are discussed.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most of the current research in the field of multi-objective
optimisation (MOO) are focussed on optimisation problems where
all of the sub-objectives are static [1–4]. On the other hand,
research on solving dynamic optimisation problems is strongly
focussed on dynamic single-objective optimisation problems
(DSOOPs) [5–8].

However, optimisation problems that occur in situations of
everyday life are normally not static in nature and have many
objectives that have to be optimised, i.e. dynamic multi-objective
optimisation problems (DMOOPs). One example of a real-life
DMOOP is a steel production plant, where customers place an
order for specific products that have to be delivered by a specified
date. In order to produce a customer's order, the material has to go
through specific production lines. Each production line consists of
a number of machines that can only manage a certain load. Since
many orders' materials are managed in the production lines at the
same time, and some orders may require the same machines, the
order in which the material of the various orders moves through
the production line has to be optimised. Since machines can break
down requiring the production lines to be re-optimised, the
optimisation of a production plant is an example of a DMOOP.
Other examples include route optimisation according to real-time

traffic, resource management of a hospital (e.g. assigning patients
to an operating room or the intensive care unit (ICU)) and the
optimisation of indoor heating, i.e. regulating the indoor tempera-
ture as efficiently as possible.

Multi-objective optimisation problems (MOOPs) with conflict-
ing objectives do not have a single solution. Therefore, multi-
objective algorithms (MOAs) aim to obtain a diverse set of non-
dominated solutions, i.e. solutions that balance the trade-off
between the various objectives, referred to as the Pareto-optimal
front (POF). Another goal of MOAs is to find a POF that is as close as
possible to the true POF of the problem.

DMOOPs are MOOPs with at least one objective changing over
time. Therefore, algorithms solving DMOOPs must have the ability
to track the changing POF in order to find non-dominated solu-
tions that are close to the new true POF.

This paper provides an overview of population-based algo-
rithms developed to solve continuous boundary-constrained
DMOOPs. The most important concepts of MOO and dynamic
multi-objective optimisation (DMOO) are provided in Section 2.
Section 3 provides an overview of dynamic MOAs (DMOAs) that
have been proposed in the literature. Section 4 discusses chal-
lenges, practical aspects and possible future research directions of
DMOO, as well as measuring the performance of DMOAs. Finally, a
summary is provided in Section 5.

2. Definitions

This section provides definitions that are required as back-
ground for the rest of the paper. Sections 2.1 and 2.2 provide

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

2210-6502/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.swevo.2013.08.004

n Corresponding author at: Meraka Institute, CSIR, P.O. Box 395, 0001 Pretoria,
South Africa.

E-mail addresses: mhelbig@csir.co.za (M. Helbig), engel@cs.up.ac.za
(A.P. Engelbrecht).

Swarm and Evolutionary Computation 14 (2014) 31–47

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2013.08.004
http://dx.doi.org/10.1016/j.swevo.2013.08.004
http://dx.doi.org/10.1016/j.swevo.2013.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2013.08.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2013.08.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2013.08.004&domain=pdf
mailto:mhelbig@csir.co.za
mailto:engel@cs.up.ac.za
mailto:engel@cs.up.ac.za
http://dx.doi.org/10.1016/j.swevo.2013.08.004


definitions with regards to MOO and DMOO respectively. The
various DMOOPs and DMOO performance measures are not
discussed in this section. However, the reader is referred to
[9,10] for a comprehensive overview of the benchmark functions
and performance measures proposed in the DMOO literature.

2.1. Multi-objective optimisation

The objectives of a MOOP are normally in conflict with one
another, i.e. improvement in one objective leads to a worse
solution for at least one other objective. In order to determine
whether one decision vector is better than another decision vector,
decision vector domination is used. For MOOPs, when one decision
vector dominates another, the dominating decision vector is
considered as a better decision vector.

Let the nx-dimensional search space or decision space be
represented by SDRnx and the feasible space represented by
FDS, where F¼S for boundary-constrained optimisation pro-
blems. Let x¼ ðx1; x2;…; xnx ÞAS represent the decision vector (a
vector of the decision variables), and let a single objective function
be defined as f k : R

nx-R. Then fðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ;…; f nk ðxÞÞA
ODRnk represents an objective vector containing nk objective
function evaluations, and O is the objective space.

Using the notation above, decision vector domination is defined
as follows:

Definition 1. Decision vector domination: Let fk be an objective
function. Then, a decision vector x1 dominates another decision
vector x2, denoted by x1!x2, if and only if

� x1 is at least as good as x2 for all the objectives, i.e.
f kðx1Þr f kðx2Þ, 8k¼ 1;…;nk; and� x1 is strictly better than x2 for at least one objective, i.e.
( i¼ 1;…;nk : f kðx1Þo f mðx2Þ.

The best decision vectors are called Pareto-optimal, defined as
follows:

Definition 2. Pareto-optimal: A decision vector xn is Pareto-
optimal if there does not exist a decision vector xaxnAF that
dominates it, i.e. ∄m : f kðxÞo f kðxnÞ. If xn is Pareto-optimal, the
objective vector, fðxnÞ, is also Pareto-optimal.

The set of all the Pareto-optimal decision vectors is referred to
as the Paretooptimal set (POS), defined as

Definition 3. Pareto-optimal set: The POS, Pn, is formed by the set
of all Pareto-optimal decision vectors, i.e.

Pn ¼ fxnAFj∄xAF : x!xng ð1Þ

The POS contains the best trade-off solutions for the MOOP. The
set of corresponding objective vectors are called the POF or Pareto
front, which is defined as follows:

Definition 4. Pareto-optimal Front: For the objective vector fðxÞ
and the POS P, the POF, PFnDO is defined as

PFn ¼ ff ¼ ðf 1ðxnÞ; f 2ðxnÞ;…; f nkmðxnÞÞjxnAPg ð2Þ

2.2. Dynamic multi-objective optimisation

Using the notation defined in Section 2.1, a boundary-
constrained DMOOP is mathematically defined as

minimise : fðx;WðtÞÞ
subject to : xA ½xmin; xmax�nx ð3Þ

where WðtÞ is a matrix of time-dependent control parameters of
an objective function at time t, WðtÞ ¼ ðw1ðtÞ;…;wnm ðtÞÞ, nx is the
number of decision variables, x¼ ðx1;…; xnx ÞARnx and xA ½xmin;

xmax�nx refers to the boundary constraints.
The goal of an algorithm solving a DMOOP is to track the POF

over time, i.e. for each time step, to find

PFnðtÞ ¼ ffðtÞ ¼ ðf 1ðxn;w1ðtÞÞ; f 2ðxn;w2ðtÞÞ;…; f nk
ðxn;wnk

ðtÞÞÞjxnAPðtÞg
ð4Þ

3. Dynamic multi- objective algorithms

This section discusses algorithms that have been proposed for
DMOO. Algorithms that aggregate the objective functions of the
DMOOP to create a DSOOP are not considered.

Section 3.1 discusses algorithms that solve DMOOPs without
adapting the problem. Approaches that convert a DMOOP into
multiple static MOOPs (SMOOPs) are discussed in Section 3.2.
Section 3.3 discusses prediction-based approaches where knowledge
of previous environments is used to predict the new POS or POF.

3.1. Algorithms that solve the dynamic multi-objective optimisation
problem without adapting the problem

This section discusses static MOO (SMOO) algorithms that were
adapted to solve DMOOPs and new population-based algorithms
that were introduced for DMOO. Generic extensions that can be
applied to any DMOA are also discussed.

3.1.1. Multi-objective optimisation algorithms adapted for dynamic
multi-objective optimisation

This section discusses evolutionary algorithms (EAs) and par-
ticle swarm optimisation (PSO)-based algorithms that were pro-
posed in the literature to solve SMOOPs and were adapted
for DMOO.

Evolutionary algorithms: One of the first algorithms proposed to
solve DMOOPs without using the weighted sum approach to
aggregate the objective functions into a DSOOP was a hybridised
minimal cost evolutionary deterministic algorithm (HMCEDA)
introduced by Farina et al. [11]. This hybrid algorithm uses an
(1þ1) evolution strategy (ES) for global optimization of the
DMOOP [12]. An (1þ1) ES is an EA that applies Gaussian mutation
[13] at each iteration to one parent to create one offspring, i.e. a
random value from a Gaussian distribution is added to each
element of a parent's vector to create an offspring. Once the
(1þ1) ES starts to converge (determined by comparing the
decision variable values of two consecutive iterations), a gradient-
based algorithm or a simplex Nelder–Mead search algorithm [14]
is used. HMCEDA was evaluated on the FDA DMOOPs [11]. For
FDA1 and FDA2, the algorithm tracked the changing POF well over
time and converged quickly to the new POF after a change in the
environment occurred. However, for FDA3, HMCEDA struggled to
converge towards the changing POF and struggled to find a diverse
set of solutions. For FDA4, the algorithm converged reasonably
well to the new POF after each change in the environment.
However, for FDA5 where the density of the solutions changes
over time, HMCEDA struggled to maintain a diverse set of solu-
tions [11]. According to Farina et al. [11] the results from the study
indicate that HMCEDA should use an EA with better performance,
such as NSGA-II [15,16], for the global optimization.

Many SMOO algorithms were adapted for DMOO. Avdagić et al.
[17] extended the multi-objective genetic algorithm (MOGA) to solve
DMOOPs. MOGA, introduced by Fonseca and Flemming [18], was the
first multi-objective genetic algorithm (GA) and incorporates Pareto-
ranking. The advantages of MOGA are a simple fitness assignment

M. Helbig, A.P. Engelbrecht / Swarm and Evolutionary Computation 14 (2014) 31–4732



Download	English	Version:

https://daneshyari.com/en/article/494108

Download	Persian	Version:

https://daneshyari.com/article/494108

Daneshyari.com

https://daneshyari.com/en/article/494108
https://daneshyari.com/article/494108
https://daneshyari.com/

