
Artificial Intelligence 248 (2017) 123–157

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

From model checking to equilibrium checking: Reactive 

modules for rational verification

Julian Gutierrez, Paul Harrenstein, Michael Wooldridge ∗

Department of Computer Science, University of Oxford, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 July 2015
Received in revised form 2 April 2017
Accepted 8 April 2017
Available online 12 April 2017

Keywords:
Complexity of equilibria
Reactive modules
Temporal logic

Model checking is the best-known and most successful approach to formally verifying 
that systems satisfy specifications, expressed as temporal logic formulae. In this article, 
we develop the theory of equilibrium checking, a related but distinct problem. Equilibrium 
checking is relevant for multi-agent systems in which system components (agents) are 
assumed to be acting rationally in pursuit of delegated goals, and is concerned with 
understanding what temporal properties hold of such systems under the assumption that 
agents select strategies in equilibrium. The formal framework we use to study this problem 
assumes agents are modelled using Reactive Modules, a system modelling language that 
is used in a range of practical model checking systems. Each agent (or player) in a Reactive 
Modules game is specified as a nondeterministic guarded command program, and each 
player’s goal is specified with a temporal logic formula that the player desires to see 
satisfied. A strategy for a player in a Reactive Modules game defines how that player 
selects enabled guarded commands for execution over successive rounds of the game. For 
this general setting, we investigate games in which players have goals specified in Linear 
Temporal Logic (in which case it is assumed that players choose deterministic strategies) 
and in Computation Tree Logic (in which case players select nondeterministic strategies). 
For each of these cases, after formally defining the game setting, we characterise the 
complexity of a range of problems relating to Nash equilibria (e.g., the computation or 
the verification of existence of a Nash equilibrium or checking whether a given temporal 
formula is satisfied on some Nash equilibrium). We then go on to show how the model 
we present can be used to encode, for example, games in which the choices available to 
players are specified using STRIPS planning operators.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Our main interest in this paper is in the analysis of concurrent systems composed of multiple non-deterministic computer 
programs, in which at run-time each program resolves its non-determinism rationally and strategically in pursuit of an 
individual goal, specified as a formula of temporal logic. Since the programs are assumed to be acting strategically, game 
theory provides a natural collection of analytical concepts for such systems [53]. If we apply game-theoretic analysis to such 
systems, then the main questions to be answered about such systems are not just “what computations might the system 
produce?”, but rather, “what computations might the system produce if the constituent programs act rationally?” If we 
interpret acting rationally to mean choosing strategies (for resolving non-determinism) that are in Nash equilibrium, then 

* Corresponding author.
E-mail address: mjw@cs.ox.ac.uk (M. Wooldridge).

http://dx.doi.org/10.1016/j.artint.2017.04.003
0004-3702/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2017.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:mjw@cs.ox.ac.uk
http://dx.doi.org/10.1016/j.artint.2017.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2017.04.003&domain=pdf


124 J. Gutierrez et al. / Artificial Intelligence 248 (2017) 123–157

this question amounts to asking “which of the possible computations of the system will be produced in equilibrium?” Further, if we 
use temporal logic as the language for expressing properties of our multi-agent and concurrent system (as is standard in the 
computer aided verification community [20]), then we can also interpret this question as “which temporal logic formulae are 
satisfied by computations arising from the selection of strategies in equilibrium?” We refer to this general problem as equilibrium 
checking [75].

Related questions have previously been considered within computer science and artificial intelligence – see e.g., [14,23,
29,30,51,13,8]. However, a common feature in this previous work is that the computational models used as the basis for 
analysis are highly abstract, and in particular are not directly based on real-world programming models or languages. For 
example, in [29] the authors define and investigate iterated Boolean games (iBG), a generalisation of Boolean games [36,37], 
in which each agent exercises unique control over a set of Boolean variables, and system execution proceeds in an infinite 
sequence of rounds, with each agent selecting a valuation for the variables under their control in each round. Each player 
has a goal, specified as a formula of Linear Temporal Logic (LTL), which it desires to see achieved. The iterated Boolean 
games model is simple and natural, and provides a compelling framework with which to pose questions relating to strategic 
multi-agent interaction in settings where agents have goals specified as logical formulae. However, this model is arguably 
rather abstract, and is some distance from realistic programming languages and system modelling languages; we discuss 
such work in more detail in the related work section towards the end of this article.

In brief, our main aim is to study a framework without these limitations. Specifically, we study game-like systems in 
which players are specified using (a subset of) the Reactive Modules language [2], which is widely used as a system 
modelling language in practical model checking systems such as mocha [4] and Prism [43]. Reactive Modules is intended 
to support the succinct, high-level specification of concurrent and multi-agent systems. As we will see, Reactive Modules

can readily be used to encode other frameworks for modelling multi-agent systems (such as multi-agent STRIPS planning 
systems [10]).

The remainder of the article is structured as follows:

• We begin in the following section by motivating our work in detail, in particular by arguing that the classical notion 
of system correctness is of limited value in multi-agent systems, and introducing the idea of equilibrium checking as 
representing a more appropriate framework through which to understand the behaviour of such systems.

• We then survey the logics LTL and CTL, and their semantic basis on Kripke structures, present srml – a sublanguage of
Reactive Modules that we use throughout the article – and then develop a formal semantics for it.

• We then introduce Reactive Modules games, in which the structure of the game (what we call the “arena”) is specified 
using Reactive Modules, and the preferences of players are specified by associating a temporal (LTL or CTL) goal formula 
with each player, which defines runs or computation trees that would satisfy the player’s goal.

• We then investigate the complexity of various game-theoretic questions in Reactive Modules games, for both the LTL 
and the CTL settings, and conclude by discussing the complexity and expressiveness of our new framework against the 
most relevant related work. Table 2 at the end of the paper summarises our findings.

• Finally, to demonstrate the wider applicability of our framework, we show how it can be used to capture propositional 
STRIPS games (cf. [22,12,25]), such as the MA-STRIPS model of Brafman and Domshlak [10].

Although largely self-contained, our technical presentation is necessarily terse, and readers may find it useful to have some 
familiarity with temporal logics [20,18], model checking [16], complexity theory [54], and basic concepts of non-cooperative 
game theory [53].

2. Motivation

Our aim in this section is to motivate and introduce the idea of equilibrium checking as a multi-agent systems counter-
part to the standard notion of verification and model checking. (Many readers will be familiar with much of this material – 
we beg their indulgence so that we can tell the story in its entirety.)

Correctness and formal verification The correctness problem has been one of the most widely studied problems in computer 
science over the past fifty years, and remains a topic of fundamental concern to the present day [9]. Broadly speaking, the 
correctness problem is concerned with checking that computer systems behave as their designer intends. Probably the most 
important problem studied within the correctness domain is that of formal verification. Formal verification is the problem 
of checking that a given computer program or system P is correct with respect to a given formal (i.e., mathematical) 
specification ϕ . We understand ϕ as a description of system behaviours that the designer judges to be acceptable – a 
program that guarantees to generate a behaviour as described in ϕ is deemed to correctly implement the specification ϕ .

A key insight, due to Amir Pnueli, is that temporal logic can be a useful language with which to express formal specifica-
tions of system behaviour [56]. Pnueli proposed the use of Linear Temporal Logic (LTL) for expressing desirable properties of 
computations. LTL extends classical logic with tense operators X (“in the next state. . . ”), F (“eventually. . . ”), G (“always. . . ”), 
and U (“. . . until . . . ”) [20]. For example, the requirement that a system never enters a “crash” state can naturally be ex-
pressed in LTL by a formula G¬crash. If we let � P � denote the set of all possible computations that may be produced by the 
program P , and let �ϕ� denote the set of state sequences that satisfy the LTL formula ϕ , then verification of LTL properties 



Download English Version:

https://daneshyari.com/en/article/4942094

Download Persian Version:

https://daneshyari.com/article/4942094

Daneshyari.com

https://daneshyari.com/en/article/4942094
https://daneshyari.com/article/4942094
https://daneshyari.com

