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Strong equivalence is an important concept in the theory of answer set programming. 
Informally speaking, two sets of rules are strongly equivalent if they have the same 
meaning in any context. Equilibrium logic was used to prove that sets of rules expressed 
as propositional formulas are strongly equivalent if and only if they are equivalent in 
the logic of here-and-there. We extend this line of work to formulas with infinitely 
long conjunctions and disjunctions, show that the infinitary logic of here-and-there 
characterizes strong equivalence of infinitary formulas, and give an axiomatization of that 
logic. This is useful because of the relationship between infinitary formulas and logic 
programs with local variables.

© 2017 Published by Elsevier B.V.

1. Introduction

Answer set programming (ASP) is a form of declarative programming based on the stable model semantics of logic 
programs [1–7]. The concept of strong equivalence plays an important role in the theory of ASP. Informally speaking, two 
sets of rules are strongly equivalent if they have the same meaning in any context.

Compare, for instance, the rules

q(X, Z) ← q(X, Y ), q(Y , Z), p(X), p(Y ), p(Z) (1)

and

← q(X, Y ), q(Y , Z), not q(X, Z), p(X), p(Y ), p(Z). (2)

Both rules express the idea that relation q is transitive on domain p. But in many contexts these rules do not have the 
same meaning: the effect of adding (1) to a logic program describing p and q is, in general, not the same as the effect of 
adding (2). The first rule allows us to derive new facts about q; adding it to a program turns relation q into its transitive 
closure. The second rule is a constraint; adding it weeds out the stable models in which q is not transitive.

✩ This paper is an invited revision of a paper which first appeared at the 13th International Conference on Logic Programming and Non-monotonic 
Reasoning.
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The situation is different, however, if the program to which we add rules (1) and (2) contains the choice rule

{q(X, Y )} ← p(X), p(Y ) (3)

(“for any X , Y from p, decide arbitrarily whether to include q(X, Y ) in the stable model”). The set consisting of rules (1)
and (3) is strongly equivalent to the set consisting of (2) and (3). Consequently, in the presence of choice rule (3), the 
program obtained by adding (1) has the same stable models as the program obtained by adding (2).

According to Lifschitz et al. [8], strong equivalence is closely related to the 3-valued logic called the logic of here-and-
there, which was introduced by Arend Heyting [9] long before the invention of computer programming.1 Consider the 
ground instances of rules (1)–(3):

q(t1, t3) ← q(t1, t2), q(t2, t3), p(t1), p(t2), p(t3),

← q(t1, t2), q(t2, t3), not q(t1, t3), p(t1), p(t2), p(t3),

{q(t1, t2)} ← p(t1), p(t2)

(t1, t2, t3 are arbitrary ground terms) and rewrite these ground rules as propositional combinations of ground atoms in the 
following way:

q(t1, t2) ∧ q(t2, t3) ∧ p(t1) ∧ p(t2) ∧ p(t3) → q(t1, t3), (4)

¬(q(t1, t2) ∧ q(t2, t3) ∧ ¬q(t1, t3) ∧ p(t1) ∧ p(t2) ∧ p(t3)), (5)

p(t1) ∧ p(t2) → q(t1, t2) ∨ ¬q(t1, t2). (6)

Formulas (4) and (5) are equivalent to each other in classical logic. But this fact cannot be established in the logic of 
here-and-there, which is weaker than classical logic. Formula (6) is a tautology; this fact cannot be established in the logic 
of here-and-there either. On the other hand, the equivalence between the set consisting of formulas of forms (4) and (6)
and the set consisting of formulas of forms (5) and (6) can be proved even in this weaker logic. This example illustrates a 
general fact: two sets of rules written as propositional formulas are strongly equivalent if and only if they are equivalent in 
the logic of here-and-there [8, Theorem 1].

In view of this relationship, proving strong equivalence can be often reduced to reasoning in a system of axioms and 
inference rules that is sound and complete with respect to the logic of here-and-there. Such formal systems have been 
known for a long time; see Section 5.1.

The proof of the theorem relating strong equivalence to the logic of here-and-there is based on the characterization of 
stable models in terms of equilibrium logic [10]—a nonmonotonic counterpart of the logic of here-and-there.

The statement of the theorem is not restricted to finite sets of formulas. This is important because a single rule with 
variables has infinitely many ground instances if we allow function symbols (or symbols for arbitrary integers) in ground 
terms. But some rules found in ASP programs can be represented by sets of propositional formulas only if we allow formulas 
themselves to be infinite; infinite sets of finite formulas do not suffice. Consider, for instance, the rule

q ← count{X : p(X)} = 0. (7)

The aggregate expression in the body means, informally speaking, that set p is empty. This rule can be thought of as an 
implication with an infinite conjunction in the body:∧

t

¬p(t) → q.

Here t ranges over ground terms. The need for infinite conjunctions and disjunctions is common when rules contain local 
variables, such as X in the example above. Many ASP programs, in particular many programs in the input language of the 
grounder gringo and its subset, the ASP Core language [11], can be represented by formulas of this type [12].

In many cases, first-order formulas can also be used to capture the meaning of ASP programs. For example, rule (7) can 
be represented using the first-order formula

∀x¬p(x) → q.

But possibilities of this approach are more limited. For instance, if count in (7) is replaced with sum, or 0 is replaced by a 
variable, the resulting rule cannot be represented using a first-order formula.

In this paper, on the basis of the definition of a stable model for infinitary propositional formulas proposed by Miroslaw 
Truszczyński [13], we extend to such formulas some definitions and theorems of the theory of strong equivalence and 
equilibrium logic. Our goals are

1 The name “here-and-there” is appropriate in view of the fact that this logic can be described in terms of Kripke frames with two worlds, “Here” and 
“There.” It is known also as “the logic of present and future” or “the Smetanich logic.”
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