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The simulation of mathematical reasoning has been a driving force throughout the history 
of Artificial Intelligence research. However, despite significant successes in computer 
mathematics, computers are not widely used by mathematicians apart from their quotidian 
applications. An oft-cited reason for this is that current computational systems cannot do 
mathematics in the way that humans do. We draw on two areas in which Automated 
Theorem Proving (ATP) is currently unlike human mathematics: firstly in a focus on 
soundness, rather than understandability of proof, and secondly in social aspects.
Employing techniques and tools from argumentation to build a framework for mixed-
initiative collaboration, we develop three complementary arcs. In the first arc – our 
theoretical model – we interpret the informal logic of mathematical discovery proposed by 
Lakatos, a philosopher of mathematics, through the lens of dialogue game theory and in 
particular as a dialogue game ranging over structures of argumentation. In our second arc 
– our abstraction level – we develop structured arguments, from which we induce abstract 
argumentation systems and compute the argumentation semantics to provide labelings of 
the acceptability status of each argument. The output from this stage corresponds to a 
final, or currently accepted proof artefact, which can be viewed alongside its historical 
development. Finally, in the third arc – our computational model – we show how each 
of these formal steps is available in implementation. In an appendix, we demonstrate our 
approach with a formal, implemented example of real-world mathematical collaboration. 
We conclude the paper with reflections on our mixed-initiative collaborative approach.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The simulation of mathematical reasoning has been a driving force throughout the history of Artificial Intelligence re-
search [58,86,87,98]. However, despite significant successes in ‘computer mathematics’ (e.g., [18,40,42,45]) computers are 
not widely used by mathematicians apart from their quotidian applications like running word processing tools, email pro-
grams, web servers and web browsers, and (sometimes) computer algebra systems. An oft-cited reason for this is that 
current computational systems cannot do mathematics in the way that humans do. Despite – or perhaps because of [69] – 
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their profound rigour, machine proofs are often thought to be unclear, uninspiring and untrustworthy, as opposed to human 
proofs which can be deep, elegant and explanatory [21,41]. In order to help to close the gap between machine-constructed 
proofs and human-constructed ones, we consider two key areas of focus: informal and social aspects of proof discovery in 
the human context. We propose that theories and tools from the field of argumentation can be used to more closely align 
AI systems with the human context in these two areas.

1.1. Informal aspects of proof

Evaluation metrics in the Automated Theorem Proving (ATP) community are focused on soundness, and the power of a 
solver to prove a wide selection of difficult problems with specific resource limits.1 Qualities of the resulting proof other 
than soundness are rarely considered. This stands at variance with the practices of the mathematical community, in which a 
lack of soundness might be forgiven if a proof is interesting or complex. Indeed, an error in a proof may be neither “perturb-
ing,” nor “surprising,” if it is judged to be the right sort of error (one which is not critical to the integrity of the proof) [20].2

Instead, one of the main criteria by which a proof is judged in the human context is its understandability. A well-written 
proof can provide insight as to why a theorem may be true, point to new conjectures, form connections between different 
fields and suggest solutions to open problems [44,75,106]. Fields medal winners Gowers and Thurston, respectively, have 
said: “We like our proofs to be explanations rather than just formal guarantees of truth” [41, p. 3], and “reliability does not 
primarily come from mathematicians formally checking formal arguments; it comes from mathematicians thinking carefully 
and critically about mathematical ideas” [94, p. 10]. Thurston emphasises that informal conversations between mathemati-
cians can often convey ideas more quickly and comprehensibly than a written proof [94, p. 6]. Hersch has suggested that 
“The standard style of expounding mathematics purges it of the personal, the controversial, and the tentative, producing a 
work that acknowledges little trace of humanity, either in the creators or the consumers” [47, p. 131].

Lakatos offered similar insight into proof-understanding [55]. Building on Pólya’s distinction between informal, unfinished 
mathematics-in-the-making and formal, finished mathematics [76], he argued that a theorem and proof which are presented 
in isolation from their development are “artificial and mystifyingly complicated”, analogous to a “conjuring act” [55, p. 142]. 
In order to make results understandable, they should be presented alongside the “struggle” and “adventure” involved in the 
story of their development. This insight is echoed by Ernest, who criticises the practice of presenting mathematics learners 
with the “sanitized outcomes of mathematical enquiry”: “The outcome may be elegant texts meant for public consumption, 
but they also generate learning obstacles through this reformulation and inversion” [67, p. 67]. Bundy points out that this 
practice also obscures understandability for research mathematicians: “Mathematicians find informal proofs more accessible 
and understandable [than formal proofs]” [21, p. 2].

In contrast to the concerns about understandability voiced by mathematicians and philosophers of mathematics, under-
standability is not traditionally a concern for ATP. A handful of exceptions have focused on making an existing machine 
proof more comprehensible [29,30,36]. MacKenzie [60] has argued that rather than treating machines as oracles and giving 
them responsibility for verifying the reliability of hardware and software, there needs to be a continued interaction between 
computer systems and our collective human judgement: “The finished product of formal verification – the ‘proof object’ – 
may thus be less important than the process of constructing it.” [61, p. 2348]. Constructing or verifying proofs which are 
written in a classical logical formalism does not align with mainstream mathematical activity, since proofs are typically 
neither constructed nor presented in this way.

Accordingly, our objective to model mathematical dialogues connects closely with the theory of defeasible argument 
(reasoning that is rationally compelling but not deductively valid [52]). The structure of classical proof theoretic systems 
and formal theorisations of defeasible argument differ [99]. Defeasible argument is used during the initial construction of a 
proof, and as the proof is refined or changed over time to reflect conceptual changes in the underlying theory, or to rectify 
deductive errors discovered after a proof is commonly accepted – all themes that Lakatos emphasised [55]. In practice, we 
may have an argument whose conclusion states that for all x, P (x) → Q (x), whose logical validity rests on a particular 
interpretation of P and Q . In some cases P or Q might not be clearly defined, and can be subsequently defined in different 
ways by different people, sometimes rendering the initial argument invalid. Whether a consensus ever occurs and whether 
we could be sure that the consensus is final, is an open and somewhat contentious question.

We propose that applied argumentation theory can improve the understandability of output from, and input to, ATP 
systems, and other computer-mediated, -moderated, or -motivated proof systems. Doing this will help to close the cultural 
gap between human and machine mathematics. One way to go about this is to keep track of informal proof development, 
presenting the errors, conflicts and deadends involved, alongside a finished or current proof artefact.

1.2. The social dimension of human mathematics

The social dimension is typically neglected in automated reasoning, which usually consists of two approaches: au-
tonomous theorem proving, in which a single system proves theorems, or interactive theorem proving, in which there is one 

1 “Wide”, “difficult” and “resources” are all defined appropriately: see, for instance [92].
2 Indeed, Aschbacher – one of the main mathematicians involved in the development of the proof of the Classification of Finite Simple Groups (one of 

the main achievements of twentieth century mathematics, on which many other results depend) – commented that “the probability of an error in the 
[CFSG] proof is one” [9], related in [20].
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