
Artificial Intelligence in Medicine 77 (2017) 23–30

Contents lists available at ScienceDirect

Artificial  Intelligence  in  Medicine

j o ur na l ho mepage: www.elsev ier .com/ locate /a i im

Updating  Markov  models  to  integrate  cross-sectional  and  longitudinal
studies

Allan  Tuckera,∗, Yuanxi  Lia,  David  Garway-Heathb

a Department of Computer Science, Brunel University, UK
b Moorfields Eye Hospital and UCL Institute of Ophthalmology, University College London, UK

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 28 February 2017

Keywords:
Disease progression
Cross-sectional studies
Markov models

a  b  s  t  r  a  c  t

Clinical  trials  are typically  conducted  over  a  population  within  a defined  time  period  in  order  to  illuminate
certain  characteristics  of  a health  issue  or disease  process.  Cross-sectional  studies  provide  a  snapshot  of
these  disease  processes  over  a large  number  of  people  but do  not  allow  us to model  the  temporal  nature
of  disease,  which  is essential  for  modelling  detailed  prognostic  predictions.  Longitudinal  studies,  on  the
other  hand,  are  used  to  explore  how  these  processes  develop  over  time  in  a  number  of people  but  can
be expensive  and  time-consuming,  and many  studies  only  cover  a  relatively  small  window  within  the
disease  process.  This  paper  explores  the  application  of intelligent  data  analysis  techniques  for  building
reliable  models  of  disease  progression  from  both  cross-sectional  and  longitudinal  studies.  The aim  is
to  learn  disease  ‘trajectories’  from  cross-sectional  data  by  building  realistic  trajectories  from  healthy
patients  to those  with  advanced  disease.  We  focus  on  exploring  whether  we  can  ‘calibrate’  models  learnt
from  these  trajectories  with  real  longitudinal  data  using  Baum–Welch  re-estimation  so  that  the  dynamic
parameters  reflect  the  true  underlying  processes  more  closely.  We  use  Kullback–Leibler  distance  and
Wilcoxon  rank  metrics  to assess  how  calibration  improves  the  models  to better  reflect  the underlying
dynamics.

Crown  Copyright  © 2017  Published  by Elsevier  B.V.  All  rights  reserved.

1. Introduction

Degenerative diseases such as cancer, Parkinson’s disease, and
glaucoma are characterised by a continuing deterioration to organs
or tissues over time. This monotonic increase in severity of symp-
toms is not always straightforward however. The rate can vary
in a single patient during the course of their disease so that
sometimes rapid deterioration is observed and other times the
symptoms of the sufferer may  stabilise (or even improve – for
example when medication is used). Interventions such as med-
ication or surgery can make a huge difference to quality of life
and slow the process of disease progression but they rarely change
the long term prognosis. The characteristics of many degenerative
diseases are therefore a general transition from healthy to early
onset to advanced stages. Longitudinal studies [1] measure clini-
cal variables from a number of people over time. Often, the results
of multiple tests are recorded, generating Multivariate Time-Series
(MTS) data. This is common for patients who have high risk indi-
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cators of disease where they are monitored regularly prior to
diagnosis. For example, patients with high intra-ocular pressure
are brought in to the clinic for visual field tests every six months
as they are at high risk of developing glaucoma. The advantages
of longitudinal data are that the temporal details of the disease
progression can be determined. However, the data is often lim-
ited in terms of the cohort size, due to the expensive nature of the
studies. Cross-sectional studies record attributes (such as clinical
test results and demographics) across a sample of the popula-
tion, thus providing a snapshot of a particular process but without
any measurement of progression of the process over time [2]. An
advantage of cross sectional studies is that they capture the diver-
sity of a sample of the population and therefore the degree of
variation in the symptoms. The main disadvantage of such stud-
ies is that the progression of disease is inherently temporal in
nature and the time dimension is not captured. For longitudi-
nal analysis, the patients are usually already identified as being
at risk and therefore, controls are usually not available and the
early stages of the disease may have been missed. While many
data integration techniques address representation heterogeneity
where similar data is stored in many different forms [8], as is com-
mon  in bioinformatics data [26], they do not attempt to combine
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variables from cross-section and longitudinal studies, which is
what is the focus of this paper. A related area of research, known
as panel analysis [21], involves trying to build models along both
the temporal dimension and the population dimension from panel
studies. Another line of research known as pooling has explored
combining cross-sectional data with time-series data [22]. Fitting
trends through data [23] is a common approach and is related in
some ways to the idea of identifying a trajectory. Another related
area of research is sequence reconstruction. This involves trying to
find the best order for a particular set of data. Methods include the
travelling-salesman-problem approach that aims to minimise the
distance between each datum [24], and more recently, the use of
PQ trees has been explored to encode partial orderings in order
to account for uncertainty in the data due to elements such as
noise [25]. Statistical process control [29,28] has also been explored
for modelling clinical data including data with unknown tempo-
ral ordering. Additionally, a resampling approach known as the
Temporal BootStrap (TBS) [5] has been developed that aims to
build multiple trajectories through cross sectional data in order to
approximate genuine longitudinal data. These ‘pseudo time-series’
(PTS) can then be used to build approximate temporal models for
prediction. This approach has been extended in order to cluster
important stages in disease progression using Hidden Markov Mod-
els (HMMs) [6]. However, the use of cross-sectional data alone will
mean that no genuine timestamps have been used to infer the mod-
els and so they only capture an ordering without real temporal
information.

In this paper, we explore how to minimise the expensive pro-
cess of longitudinal data collection by taking models that are learnt
from cross-sectional studies using pseudo temporal methods and
‘calibrating’ with limited longitudinal data. We  do this calibration
by using the Baum–Welch algorithm to update stochastic models
learnt from pseudo time-series so that the dynamic parameters
better reflect the underlying process. Essentially, we are integrat-
ing cross-sectional and longitudinal data to increase the temporal
information and the diversity of data from a large population. Many
data integration techniques address representation heterogeneity
where similar data is stored in many different forms, as is com-
mon in bioinformatics data [7]. Meta Analysis, a popular approach
[9], works by supplying a statistical framework for identifying sig-
nificant results over a number of independent published studies,
and calculating the significance of all of the studies when they
are brought together. However, it can be prone to publication bias
where positive results are more likely to be published and therefore
skew the statistics.

In the next section we  formally describe the construction of
pseudo time-series using the Temporal BootStrap, the experimen-
tal set up for assessing the calibration of models with longitudinal
data, and the clinical data from glaucoma patients that is used. In the
results section, the added value of calibrating pseudo time-series
models is demonstrated on simulated data and real clinical data.
Finally a case study is explored using the longitudinal glaucoma
data and a cross-sectional glaucoma study before conclusions are
made.

2. Methods

2.1. Generating pseudo time-series

Let a dataset D be defined as a real valued matrix where m (rows)
is the number of samples – here patients – and n (columns) is the
number of variables – clinical test data. We  define D(i) as the ith
row of matrix D. The vector C = [c1, c2, . . .,  cm] represents defined
classes, where each ci ∈ {0, 1} corresponds to the sample i, ci = 0
represents that sample i is a healthy case, and ci = 1 represents that

sample i is a diseased case. These classifications are based upon
the diagnoses made by experts. We  define a time-series as a real
valued T (row) by n (column) matrix where each row corresponds
to an observation measured over T time points. We  say that if T(i)
was observed before T(j) then i < j.

We define a set of pseudo time-series indices as P = {p1, p2, . . .,
pk} where each pi is a T length vector where T > 0. We  define pij as the
jth element of pi and each pij ∈ {1, . . .,  m}. We  define the function
F(pi) = [pi1, . . .,  piT] as creating a T by n matrix where each row of
F(pi) = D(pij). A pseudo time-series can be constructed from each
pi using this operator. For example, if a pseudo time-series index
vector p1 = [3, 7, 2] then F(p1) is a matrix where the first row is D(3),
the second row is D(7) and the third row is D(2). The corresponding
class vector of each pseudo time-series generated by F(pi) is given
by G(pi) = [C(pi1), . . .,  C(piT)].

To demonstrate this notation consider the following
example:

Let the data matrix D be defined as:

D =
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, Dij ∈ R.

Let the corresponding class vector be C = [c1, c2, c3, c4]. If P = p1,
p2 where p1 = [1, 3, 1] and p2 = [2, 3, 1] then:

F(p1) =
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, G(p1) = [c1, c3, c1],

and

F(p2) =
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, G(p2) = [c2, c3, c1].

Building pseudo time-series involves plotting trajectories
through cross-sectional data based upon distances between each
point using prior knowledge of healthy and disease states. These
trajectories can then be used to build temporal models such
as Dynamic Bayesian Networks (DBNs) [10] and Hidden Markov
Models (HMMs) to make forecasts [11]. The Temporal BootStrap
involves resampling data [14] from a cross-sectional study and
repeatedly building trajectories through the samples in order
to build more robust time-series models. Each trajectory begins
at a randomly selected datum from a healthy individual and
ends at a random datum classified as diseased. The trajectory is
determined by the shortest path of Euclidean distances between
these two points. The data is first standardised to a mean � of
zero and a standard deviation � of one as we  found that this
led to better HMM  models. We use the Floyd–Warshall algo-
rithm [12], a well established algorithm used to find the shortest
path in a minimum spanning tree from the weighted graph. A
full description of the algorithm to generate pseudo time-series
is shown in Algorithm 1 and appears in [5]. An example of
pseudo time-series that have been generated from cross-sectional
data are shown in Fig. 1. Again, this was plotted on the first
two components that were generated using multidimensional
scaling.
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