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a  b  s  t  r  a  c  t

Objective:  This  study  aims  at developing  and  introducing  a  new  algorithm,  called  direct  causal  learner
(DCL),  for  learning  the direct  causal  influences  of  a single  target.  We  applied  it to  both  simulated  and  real
clinical  and genome  wide  association  study  (GWAS)  datasets  and  compared  its performance  to classic
causal  learning  algorithms.
Method:  The  DCL  algorithm  learns  the  causes  of a single  target  from  passive  data  using  Bayesian-scoring,
instead  of  using  independence  checks,  and  a novel  deletion  algorithm.  We  generate  14,400  simulated
datasets  and  measure  the  number  of datasets  for  which  DCL  correctly  and  partially  predicts  the  direct
causes.  We  then  compare  its  performance  with  the  constraint-based  path  consistency  (PC)  and  conser-
vative  PC  (CPC)  algorithms,  the  Bayesian-score  based  fast  greedy  search  (FGS)  algorithm,  and  the  partial
ancestral  graphs  algorithm  fast  causal  inference  (FCI).  In  addition,  we  extend  our  comparison  of  all  five
algorithms  to both  a real GWAS  dataset  and real  breast  cancer  datasets  over  various  time-points  in  order
to  observe  how  effective  they are at  predicting  the  causal  influences  of  Alzheimer’s  disease  and  breast
cancer  survival.
Results: DCL  consistently  outperforms  FGS,  PC,  CPC,  and  FCI in  discovering  the  parents  of the  target  for  the
datasets  simulated  using  a  simple  network.  Overall,  DCL  predicts  significantly  more  datasets  correctly
(McNemar’s  test  significance:  p « 0.0001)  than  any  of  the  other  algorithms  for  these  network  types.  For
example,  when  assessing  overall  performance  (simple  and  complex  network  results  combined),  DCL
correctly  predicts  approximately  1400  more  datasets  than  the  top  FGS  method,  1600  more  datasets  than
the top CPC  method,  4500  more  datasets  than  the  top  PC method,  and  5600  more  datasets  than  the  top FCI
method.  Although  FGS  did correctly  predict  more  datasets  than  DCL  for the complex  networks,  and  DCL
correctly  predicted  only  a few  more  datasets  than  CPC  for these  networks,  there  is no  significant  difference
in performance  between  these  three  algorithms  for this  network  type.  However,  when  we use  a more
continuous  measure  of  accuracy,  we  find  that  all the  DCL  methods  are  able  to  better  partially  predict
more  direct  causes  than FGS  and  CPC  for the  complex  networks.  In  addition,  DCL  consistently  had  faster
runtimes  than  the other  algorithms.  In  the  application  to  the  real  datasets,  DCL  identified  rs6784615,
located  on  the  NISCH  gene,  and  rs10824310,  located  on the  PRKG1  gene,  as  direct  causes  of late  onset
Alzheimer’s  disease  (LOAD)  development.  In addition,  DCL  identified  ER  category  as  a direct  predictor
of  breast  cancer  mortality  within  5 years,  and  HER2  status  as  a  direct  predictor  of  10-year  breast  cancer
mortality.  These  predictors  have  been  identified  in  previous  studies  to have  a  direct  causal  relationship
with  their  respective  phenotypes,  supporting  the  predictive  power  of DCL.  When  the  other  algorithms
discovered  predictors  from  the  real  datasets,  these  predictors  were  either  also  found  by  DCL  or  could  not
be supported  by  previous  studies.
Conclusion:  Our results  show  that  DCL outperforms  FGS,  PC,  CPC,  and  FCI  in almost  every  case,  demonstrat-
ing  its potential  to advance  causal  learning.  Furthermore,  our  DCL  algorithm  effectively  identifies  direct
causes  in  the  LOAD  and  Metabric  GWAS  datasets,  which  indicates  its  potential  for  clinical  applications.
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1. Introduction

In medical applications, we  often identify variables that are
associated with diseases or outcomes. For example, in genome wide
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association studies (GWAS) we look for single nucleotide polymor-
phisms (SNPs) that are associated with a particular disease. A SNP
results when a nucleotide that is typically present at a specific loca-
tion on the genomic sequence is replaced by another nucleotide
[1]. These high dimensional GWAS datasets can concern over a mil-
lion SNPs. By looking at single-locus associations, researchers have
identified over 150 risk loci associated with 60 common diseases
and traits [2–4]. However, most of these studies do not identify
actual causative loci. For example, a locus could be associated with
the disease due to linkage disequilibrium. Jiang et al. [5] analyzed
a late onset Alzheimer’s disease (LOAD) GWAS dataset, and discov-
ered that both APOE and APOC1 are strongly associated with LOAD.
However, these genes are in linkage disequilibrium. Although it
is well-known that APOE is causative of LOAD [6], without fur-
ther analysis we cannot say whether this dataset supports that
APOC1 is also causative of LOAD. As another example, Curtis et al.
[7] developed and analyzed the Metabric breast cancer dataset,
which contains data on breast cancer patients, genomic and clini-
cal features of those patients, and survival outcomes. They found,
for example, that tumor size, the number of positive Lymph nodes,
and tumor grade are all associated with breast cancer-related death.
However, perhaps tumor size is associated with survival outcome
only due to its association with grade. If we can further analyze such
datasets to identify the direct causal influences, it would be helpful
both at the level of understanding the mechanisms of disease ini-
tiation and propagation, and at the level of patient treatment (i.e.
develop and provide treatments that address the causes).

Bayesian networks (BNs) are an effective architecture for mod-
eling causal relationships from passive observational data. Passive
observational data is collected without controlling for factors or
perturbing the system in question. In contrast, experimental data
involves a researcher’s intervention to either control for factors,
such as a treatment given or subject groups. Observational data
and experimental data are both collected objectively but the for-
mer  does so in an uncontrolled setting (not subject to controlled
experimentation) making it traditionally more difficult to deter-
mine causality [8].

We  developed a new algorithm, direct causal learner (DCL),
for learning causal influences, which concentrates on learning the
direct causes of a single target using Bayesian-scoring rather than
independence checks. We  applied the algorithm to 14,400 simu-
lated datasets, a GWAS LOAD dataset that concerns disease status
(present or absent) [6], and to the Metabric breast cancer datasets
that concern breast cancer survival outcome over various time-
points [7]. We compared the performance of our DCL algorithm
to the constraint-based path consistency (PC) and conservative PC
(CPC) algorithms, the score-based fast greedy search (FGS) algo-
rithm, and the partial ancestral graphs (PAGs) algorithm fast causal
inference (FCI), which are all implemented in the Tetrad package
[9].

2. Methods

2.1. Overview of BNs

Since our algorithm concerns BNs, we  first review them. BNs
[10–12] are increasingly being used for uncertainty reasoning and
machine learning in many domains including biomedical informat-
ics [13–18]. A BN consists of a directed acyclic graph (DAG) G = (V,
E), whose nodeset V contains random variables, whose edges E rep-
resent relationships among the variables, and whose conditional
probability distribution of each node X ∈ V is given for each combi-
nation of values of its parents. Each node V in a BN is conditionally
independent of all its non-descendants given its parents in the BN.
Often the DAG in a BN is a causal DAG [11]. Fig. 1 shows a BN mod-
eling relationships among variables related to respiratory diseases.

Using a BN, we  can determine probabilities of interest with a
BN inference algorithm [11]. For example, using the BN in Fig. 1,
if a patient has a smoking history (H = yes), a positive chest X-ray
(X = pos), and a positive CAT scan (CT = pos), we can determine the
probability of the patient having lung cancer (L = yes). That is, we
can compute P(L = yes| H = Yes, X = pos, CT = pos). Inference in BNs
is NP-hard. So, approximation algorithms are often employed [11].
Additionally, learning a BN from data concerns learning both the
parameters and the structure (called a DAG model).

Fig. 1. A BN representing relationships among variables related to respiratory diseases.
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