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a  b  s  t  r  a  c  t

Background:  Identifying  transcription  factors  binding  sites  (TFBSs)  plays  an  important  role  in  understand-
ing  gene  regulatory  processes.  The  underlying  mechanism  of  the  specific  binding  for  transcription  factors
(TFs) is still  poorly  understood.  Previous  machine  learning-based  approaches  to identifying  TFBSs  com-
monly  map  a known  TFBS  to  a one-dimensional  vector  using  its  physicochemical  properties.  However,
when  the dimension-sample  rate  is large  (i.e., number  of  dimensions/number  of  samples),  concatenating
different  physicochemical  properties  to  a one-dimensional  vector  not  only  is likely  to  lose  some  structural
information,  but  also  poses  significant  challenges  to recognition  methods.
Materials  and method:  In this  paper,  we  introduce  a purely  geometric  representation  method,  tensor  (also
called  multidimensional  array),  to  represent  TFs using  their  physicochemical  properties.  Accompanying
the  multidimensional  array representation,  we  also  develop  a tensor-based  recognition  method,  tensor
partial  least  squares  classifier  (abbreviated  as  TPLSC).  Intuitively,  multidimensional  arrays  enable  bor-
rowing  more  information  than one-dimensional  arrays.  The  performance  of each  method  is  evaluated  by
average  F-measure  on 51  Escherichia  coli TFs  from  RegulonDB  database.
Results:  In our  first experiment,  the  results  show  that  multiple  nucleotide  properties  can  obtain  more
power  than  dinucleotide  properties.  In  the second  experiment,  the  results  demonstrate  that  our  method
can gain  increased  prediction  power,  roughly  33%  improvements  more  than the  best  result  from  existing
methods.
Conclusion:  The  representation  method  for TFs  is  an  important  step  in TFBSs  recognition.  We  illustrate
the  benefits  of  this  representation  on real  data  application  via  a series  of  experiments.  This  method  can
gain  further  insights  into  the  mechanism  of  TF  binding  and be of great  use  for  metabolic  engineering
applications.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Transcription factors (TFs) are one of groups of proteins that
bind to specific regions on the DNA sequence, thereby activating or
repressing the rate of gene transcription [1,2]. In practical bioengi-
neering applications, an effective method for identifying new TFBSs
plays an important role in providing insights into cellular behav-
ior, and helps us further understand the complex gene regulatory
networks in cells [3,4].

Generally, the method for identifying TFBSs can be roughly
divided into two categories: the experimental and computational
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approach. However, both categories are not mutually exclusive.
Experimental methods can identify binding sites in some cases,
such as DNase footprinting [5,6] and electrophoretic mobility shift
assays [7,8]. However, due to the relatively short length and high
degrees of degeneracy of such TFBSs, showing how the specificity of
protein-DNA interactions is challenging. More specifically, with the
advances in high-throughput sequencing technologies, the resolu-
tion is limited in hundreds of base-pairs (bps), and the procedure
to identify TFBSs is still laborious and difficult in in vivo protein
binding across the whole genome [9].

As supplement to the experimental method, the computational
method not only identifies the real TFBSs in practice, but also
provides useful instructions about the distribution of probes and
potential binding sites. For example, in previous studies, consen-
sus sequence and position-specific weight matrix (PWM)  have been
commonly used to model the sequence motifs [10–13]. In princi-
ple, these two  methods can predict the binding sites via comparing
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test sequences and consensus sequences. However, both methods
result in a low identification rate because they both assume that
the relationship between the nucleotide positions is independent.
To address this issue, physicochemical properties (e.g., shape) are
frequently introduced to help gain more information about the
original DNA sequence [14–18]. To increase the prediction power,
extensive studies leverage machine learning methods to train a pre-
diction model, providing a promising way to identify TFBSs, such
as support vector machine (SVM) [19,20,14], random forest (RF)
[21,22], and deep learning [23].

Therefore, we can conclude that a well-performing method for
identifying TFBSs mainly depends not only on a powerful prediction
model but also a good representation method, which contains as
much information about sequences as possible. However, there are
several potential drawbacks when a DNA sequence is represented
as a one-dimensional numeric vector. Theoretically, randomly per-
muting (or re-ranking) features do not affect the accuracy of the
prediction model. In other words, the one-dimensional numeric
vector and its corresponding DNA sequence do not necessarily have
one-to-one correspondence, and the different binding sites might
have the same distribution pattern after we re-rank the features,
which contradicts with our original intention. On the other hand,
the letter features (Section 2) will become useless if the identifying
procedure incorporates a feature selection step. Because four fea-
tures together represent one type of nucleobases, separating the
four features becomes meaningless in practice. A promising way to
deal with this issue is to use multidimensional array-based repre-
sentation [24,25]. This type of representation has been successfully
applied to EEG signals classification in biomedical engineering
[26–28], image processing in computer vision or pattern recogni-
tion [29–31], and other fields [32–34].

In this paper, moving beyond the one-dimensional representa-
tion of TFBSs, we first represent a TFBS as a multidimensional array
where the rows exhibit physicochemical properties of the DNA
sequence, such as shear, stretch and shift, and the columns denote
the different base pair steps (k-mers) within subsequent motifs.
The elements in the multidimensional array indicate the value
of physicochemical features with respect to k-mers. Accompany-
ing the multidimensional array representation, we  also develop
a multidimensional array-based PLS classifier (TPLSC) to predict
TFBSs. The experiments were conducted on 51 TFs in Escherichia coli
from RegulonDB, and the results demonstrate that our method
can significantly improve the recognition rate, especially for the
integration host factor (IHF), which is well-known to exhibit both
features specific to each base and DNA structural properties [35].

The rest of the paper is organized as follows: in Section 2, we
illustrate the detailed process of multidimensional array-based
representation for TFBSs. In Section 3, we discuss the standard
partial least squares classifier and tensor partial least squares clas-
sifier together to demonstrate the relationship between two types
of classifiers. The results are given in Section 4. Some concluding
remarks are presented in Section 5.

2. Materials and TFBSs representation

In this section, we illustrate the detailed process of high-
order representation for TFBSs. The real data sets confirmed
by experiments can be downloaded from the RegulonDB v8.0
database (http://regulondb.ccg.unam.mx/ (accessed: 10.03.16)).
This database collects the E. coli k-12 transcription informa-
tion, and aims to build a comprehensive transcription regulation
network [36]. In the current study, the real transcription fac-
tor binding sites were derived from the reference sequences
(E. coli k-12 genome MG1655 (NCBI: NC 000913.3)), accord-
ing to the starting position and the ending position which

Table 1
The combinations of different properties, and their corresponding values were col-
lected from [19,37]. n is the number of binding sites for a specific TF, and the number
n can be found in Fig. 4.

Combination Description Dimension

Di All possible 2-mers properties n × 111 × 35
DiL All possible 2-mers properties and the

letter features
n × 115 × 35

Mu  3-mers, 4-mers, and 7-mers properties n × 70 × 35
MuL  3-mers, 4-mers and 7-mers properties,

and the letter features
n × 74 × 35

DiMu 2-mers, 3-mers, 4-mers, and 7-mers
properties

n × 181 × 35

DiMuL 2-mers, 3-mers, 4-mers and 7-mers
properties, and the letter features

n × 185 × 35

were from the RegulonDB database. To make comprehen-
sive comparison, we randomly selected 1000 sequences from
background genome sequences (non-coding sequences) as the
negative samples to distinguish from the known TFBSs (positive
samples).

Briefly, we summarized two ways to represent TFBSs from pre-
vious studies: base pair steps (e.g., 2-mer, 3-mer, and 7-mer),
and geometrical parameters of base pairs (e.g., shear, stretch, and
shift). In this paper, we focused on the physicochemical proper-
ties recorded as 2-mers to characterize the specific TFBSs, and the
extended physicochemical properties recorded as 3-mers, 4-mers,
and 7-mers from two  recent studies [37,19]. For 2-mers, we col-
lected all dinucleotide properties from DiProDB database (http://
diprodb.fli-leibniz.de/ShowTable.php (accessed: 10.03.16)), and
the total number of corresponding properties was  110. For k-mers
(k = 3, 4, 7), all dinucleotide properties were collected from the
Additional Materials in the paper [19] and the total number of cor-
responding properties for 3-mers was  62, 4-mers was 6, and 7-mers
was 2. The papers have not provided the properties for 5-mers, 6-
mers or other base pair steps; therefore, we left out these features in
our study. Additionally, we  also incorporated the letter features to
provide the same information as used in PWM-based approaches.
As described in previous studies [37,19], letter features were gen-
erated by designating the four kinds of nucleotides – A, C, G, and
T – as mutually orthogonal 4D vectors (1,0,0,0), (0,1,0,0), (0,0,1,0),
and (0,0,0,1), respectively.

We  extended the length of all TFBSs with flanking nucleotides
to 41 base pairs. As shown in the first step of Fig. 1, if we slide
a subwindow from left to right on a 41 base pairs sequence, it
will generate 35 features for 7-mers, 40 features for 2-mers, 39
features for 3-mers, and 38 features for 4-mers. To make a uni-
fied representation, we symmetrically discarded the nucleotides
from both sides to ensure all k-mers with the same length (35). To
clearly show the process of tensor representation, we take a bind-
ing site from AgaR TF as an example (Fig. 1), for 3-mers, we have 62
physicochemical properties and 35 features which form a 62 × 35
matrix, and the element a1,1 in the matrix indicates the value of
the physicochemical properties (such as ‘shear’) with respect to the
first 3-mer feature, TTA; for 4-mers, 6 physicochemical properties
and 35 features which form a 6 × 35 matrix; for 7-mers, 2 physic-
ochemical properties and 35 features which form a 2 × 35 matrix.
Then we  simply concatenate the three matrices to form a tensor
X(n) (1 × 70 × 35). Assuming there are 11 binding sites for AgaR TF,
therefore, we can obtain a third order tensor X  in which the order is
number of binding sites × number of physicochemical properties ×
Number of features (11 × 70 × 35). We  did not illustrate the 2-mers
(110 × 35 matrix) and the letter features (4 × 35 matrix) in Fig. 1.
However, the process is similar to what we described above. The
dimensionality of each tensor X  is shown in Table 1.
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