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a  b  s  t  r  a  c  t

Objective:  Recursive  partitioning  is a common,  assumption-free  method  of survival  data  analysis.  It
focuses  mainly  on  univariate  trees,  which  use splits  based  on  a single  variable  in  each  internal  node.  In
this  paper,  I  provide  an extension  of an  oblique  survival  tree  induction  technique,  in which  axis-parallel
splits  are  replaced  by hyperplanes,  dividing  the feature  space  into  areas  with  a homogeneous  survival
experience.
Method  and  materials:  The  proposed  tree induction  algorithm  consists  of two  steps.  The  first  covers  the
induction  of  a large  tree  with  internal  nodes  represented  by  hyperplanes,  whose  positions  are calculated
by  the  minimization  of a piecewise-linear  criterion  function,  the  dipolar  criterion.  The  other  phase  uses  a
split-complexity  algorithm  to prune  unnecessary  tree  branches  and  a 10-fold  cross-validation  technique
to choose  the  best  tree.  The  terminal  nodes  of  the final  tree  are  characterised  by  Kaplan–Meier  survival
functions.  A  synthetic  data  set  was  used  to test  the  performance,  while  seven  real  data  sets  were  exploited
to validate  the  proposed  method.
Results:  The  evaluation  of  the  method  was  focused  on  two features:  predictive  ability  and  tree  size.  These
were  compared  with  two  univariate  tree models:  the  conditional  inference  tree  and  recursive  partitioning
for survival  trees,  respectively.  The  comparison  of the  predictive  ability,  expressed  as  an  integrated  Brier
score,  showed  no  statistically  significant  differences  (p =  0.486)  among  the  three  methods.  Similar  results
were  obtained  for the tree  size  (p =  0.11),  which  was calculated  as  a median  value  over  20  runs  of  a  10-fold
cross-validation.
Conclusions:  The  predictive  ability  of trees  generated  using  piecewise-linear  criterion  functions  is com-
parable  to  that  of univariate  tree-based  models.  Although  a similar  conclusion  may  be  drawn  from  the
analysis  of the tree  size,  in the majority  of  the  studied  cases,  the  number  of nodes  of  the  dipolar  tree  is
one  of  the  smallest  among  all the  methods.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The prediction of failure time is one of the major tasks in sur-
vival analysis. In the medical domain, it often describes the time to
death or disease relapse. Cox’s proportional hazards model [1] is
one of the most common statistical methods used to analyse sur-
vival data. This semi-parametric model requires the fulfillment of
certain assumptions about an analysed phenomenon that is often
difficult to achieve. Some other restrictions concern accelerated
failure time models [2], for which the analytical form of the rela-
tionship between the survival function and the covariates should
be established. The requirements accompanying statistical models
result in the development of alternative, assumption-free meth-
ods of survival analysis. Among them, tree-based models play an
important role.
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Survival trees are mainly intended to analyze right-censored
data, and their first applications appeared in the eighties. As pointed
out by LeBlanc and Crowley [3], tree induction algorithms may
be categorized from the point of view of a splitting criterion (i.e.,
the impurity or the between-node separation measure). The first
group covers the algorithms following the CART (Classification and
Regression Trees) methodology [4]. Gordon and Olshen [5] used the
Wasserstein metric, Davis and Anderson [6] applied exponential
log-likelihood loss, LeBlanc and Crowley [7] applied an approxi-
mation of the full likelihood for the proportional hazards model,
while Therneau et al. [8] used martingale-based residuals from the
Cox model. The other group of algorithms is usually based on the
Tarone–Ware class of two-sample statistics for censored data, such
as the log-rank test [9–11].

Another important aspect of tree induction methods is a stop-
ping criterion. Its appropriate choice causes the final tree to have
a good generalization ability; too small or too large trees lead to
an under- or overfitting phenomenon. A common way  to select the
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Fig. 1. Division of the feature space into three disjoined areas (1,2,3) by the hyperplanes H0 and H1 in univariate and oblique trees.

final tree is to build a large tree and then prune some of its branches.
The idea was proposed in [4] as cost-complexity pruning and was
then extended to survival trees by LeBlanc and Crowley [11] and
referred to as a split-complexity algorithm. Another approach does
not separate the pruning phase from the induction process. Rather,
a decision on the split importance is made during creation of the
node. Hothorn et al. [12] proposed the use of multiple test proce-
dures and to stop the split if the test results are not statistically
significant at a given value of ˛.

Comparisons of different splitting criterion and pruning tech-
niques was presented in [13,14], while a comprehensive overview
of tree-based models was provided by Bou–Hamad et al. [15].

Although single trees are now often replaced by more powerful
ensembles of trees, they have one undeniable advantage: an insight
into data [15], made possible by analysing splits in subsequent
internal nodes, which divide the feature space into homogeneous
areas. The survival trees are narrowed to univariate trees, in which
one split is based on only one variable. In real data, the borders
between regions with different survival experiences need not be
parallel to the coordinate axes (Fig. 1). If we use a univariate tree
to solve this problem, we must create a number of internal nodes
instead of one hyperplane.

In this paper, I develop a method of oblique survival tree induc-
tion, introduced briefly in [16]. Here, a single split is equivalent to
any hyperplane, whose location is determined by the minimiza-
tion of a convex and piecewise-linear (CPL) criterion function [17]
built based on right-censored data. The performance of the final
tree, chosen by a split-complexity pruning method [11], was com-
pared with those of two univariate tree-based models: a conditional
inference tree [12] and recursive partitioning for survival trees [18]
(R package: rpart), which corresponds to a method proposed by
LeBlanc and Crowley [7].

The paper consists of 7 sections. Section 2 introduces a definition
and basic concepts of survival data. In Section 3, the piecewise-
linear criterion function, the dipolar criterion, is presented. An
oblique survival tree induction algorithm is described in Section 4.
Possible validation measures are presented in Section 5, while Sec-
tion 6 shows the results of the experiments on synthetic and real
data. Section 7 contains the conclusions.

2. Survival data

Observe random variable P = (X, T, �), where X is the N-
dimensional feature vector, T = min(T0, C), T0 is the survival time
with the distribution function ft, C is the censoring time with
the distribution function fc, and � is the censoring indicator
� = I(T0 < C). A learning sample, L, consists of M observations (xi,
ti, ıi), i = 1, 2, . . .,  M,  where xi is the N-dimensional feature vec-
tor describing the ith patient, ti is the survival time, and ıi is the

failure indicator, which takes one of two  values: 0 for censored
observations or 1 for uncensored ones.

The distribution of the survival time may  be described by several
functions. One of them is a survival function, which represents the
probability of surviving beyond the time t: S(t) = P(T > t). One of the
most common nonparametric estimators of the survival function is
the Kaplan–Meier product-limit estimator [19]. If we  assume that
the events of interest occur at D distinct times t(1) < t(2) < . . . < t(D),
the estimator is calculated as follows:

Ŝ(t) =
∏

j|t(j)≤t

(
mj − dj

mj

)
(1)

where dj is the number of events at time t(j) and mj is the number
of patients at risk at t(j) (i.e., the number of patients who are alive
at t(j) or experience the event of interest at t(j)).

3. Dipolar criterion function

CPL criterion functions are common methods used in data anal-
ysis. In this paper, a CPL function, the dipolar criterion �d(·) [17],
was used to determine the splits in the internal nodes of survival
trees.

Let us introduce the augmented feature and weight vectors:

z = [1,  x1, x2, . . .,  xN]T

v = [−�, w1, w2, . . .,  wN]T
(2)

For any feature vector zj, j = 1, 2, . . .,  M from the learning set L, we
can define two piecewise-linear penalty functions:

ϕ+
j

(v) =
{

ıj − vT zj if vT zj ≤ ıj

0 if vT zj > ıj

(3)

and

ϕ−
j

(v) =
{

ıj + vT zj if vT zj ≥ −ıj

0 if vT zj < −ıj

(4)

where ıj ≥ 0 is a margin usually equal to 1. In Fig. 2, we can see
graphical representations of ϕ+

j
(v) and ϕ−

j
(v) compared to the scalar

product vT zj .
If we take into account a hyperplane H(v) = {z : vT z = 0} (or,

equivalently, H(w,  �) = {x : wT x = �}), the functions ϕ+
j

(v) and

ϕ−
j

(v), associated with a given feature vector zj, penalize for the
inappropriate position of H(v) toward zj. The minimization of the
penalty enforces a correct localisation of H(v); in addition, with a
margin greater than zero, the hyperplane is unable to pass through
zj, which improves the generalization ability.
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