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a  b  s  t  r  a  c  t

Background:  Cooperative  robotics  is receiving  greater  acceptance  because  the  typical  advantages  provided
by manipulators  are  combined  with  an  intuitive  usage.  In particular,  hands-on  robotics  may  benefit  from
the  adaptation  of the  assistant  behavior  with  respect  to the  activity  currently  performed  by  the  user.  A
fast  and  reliable  classification  of  human  activities  is required,  as  well  as  strategies  to smoothly  modify  the
control  of the  manipulator.  In this  scenario,  gesteme-based  motion  classification  is  inadequate  because
it  needs  the  observation  of a wide  signal  percentage  and  the  definition  of a  rich  vocabulary.
Objective: In this  work,  a  system  able  to  recognize  the  user’s  current  activity  without  a vocabulary  of
gestemes,  and to  accordingly  adapt  the manipulator’s  dynamic  behavior  is  presented.
Methods and  material:  An underlying  stochastic  model  fits  variations  in  the  user’s  guidance  forces  and  the
resulting  trajectories  of  the  manipulator’s  end-effector  with  a  set  of  Gaussian  distribution.  The  high-level
switching  between  these  distributions  is  captured  with  hidden  Markov  models.  The  dynamic  of  the  KUKA
light-weight  robot,  a torque-controlled  manipulator,  is modified  with  respect  to  the classified  activity
using  sigmoidal-shaped  functions.  The presented  system  is validated  over  a pool  of  12  näive  users in  a
scenario  that  addresses  surgical  targeting  tasks  on  soft  tissue.  The  robot’s  assistance  is adapted  in  order
to obtain  a stiff  behavior  during  activities  that  require  critical  accuracy  constraint,  and  higher  compliance
during  wide  movements.  Both  the  ability  to  provide  the  correct  classification  at  each  moment  (sample
accuracy)  and the  capability  of correctly  identify  the  correct  sequence  of activity  (sequence  accuracy)
were  evaluated.
Results:  The  proposed  classifier  is  fast  and  accurate  in all  the  experiments  conducted  (80%  sample  accu-
racy after  the  observation  of  ∼450 ms  of signal).  Moreover,  the  ability  of  recognize  the  correct  sequence
of  activities,  without  unwanted  transitions  is guaranteed  (sequence  accuracy  ∼90%  when  computed
far  away  from  user  desired  transitions).  Finally,  the proposed  activity-based  adaptation  of the robot’s
dynamic  does  not  lead  to a not  smooth  behavior  (high  smoothness,  i.e. normalized  jerk  score  <0.01).
Conclusion:  The  provided  system  is able  to  dynamic  assist  the  operator  during  cooperation  in  the  pre-
sented  scenario.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Cooperatively controlled robotic assistants are receiving greater
acceptance in several application domains (e.g. industrial, medical)
because of the advantages coming from the human agent involved
in the control loop [1]. In hands-on robotic surgery, the sur-
geon moves tools fixed to the manipulator’s end-effector by direct
application of forces on the robot’s links [2], achieving increased
accuracy and safety during the operations, e.g. in retinal surgery [3]
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and orthopedic surgery [4]. Thus, hands-on controlled robots take
advantage of the human decision making process and experience
combining safety and intuitiveness with the enhancement strate-
gies provided by the robot (e.g. hand tremor rejection or fatigue
reduction) [5]. In assistive and rehabilitation robotics, for instance,
the use of a manipulator proved to enhance post-trauma therapies
[6]. The human user is often tightly coupled to the robotic device [6]
and the use of the manipulator could provide active patient assis-
tance in task-specific arm movement completion [7,8] or guidance
for a paretic arm during particular constrained movements [9]. In
particular, the cooperative control approach in rehabilitation was
proven to enable patients to train in an active, variable and more
natural way, with more physiological muscle activity [10].
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To know how and when to provide the most appropriate level of
assistance (e.g. in terms of adaptation of control strategy) is advis-
able in order to provide a more versatile robotic assistant and to
get the best performances from the shared human–robot cooper-
ation [11–13]. For example, during surgical brain cortex mapping
procedures, the manipulator compliance can be adapted in order
to damp the tool motion near the patient while maintaining highly
compliant behavior elsewhere [14]. Conversely, in robot-aided gait
rehabilitation, the robot assistance can be modified on the basis
of the patient influence on the control, e.g. trigger leg movement
whether a relevant muscle activity is detected [10].

In order to select the most suitable assistance at each moment
it is necessary to infer the user’s current activity/intention from
raw input signals, online and in real-time [15]. In fact, effective
human–robot interaction should avoid explicit UI mechanisms to
change the assistant behavior [16]. Thus, a robot should be able
to recognize the user’s non-verbal cues [17], involving a degree of
awareness of its surrounding [16].

Machine-learning algorithms are exploited in the field of assis-
tive robotics to provide intuitive control of prosthesis (e.g. to
predict switching between multiple functions of a powered arti-
ficial limb [6]) or to infer the user’s intention of motion (e.g. to
coordinate walking support exoskeletons for paraplegia patients
[18]). They have also shown potential application in pre-surgical
analysis, in order to classify different types of epilepsy in a fully
automatic way [19].

In robotic surgery applications, intention-awareness has been
addressed in order to distinguish whether a specific action, e.g. the
violation of an active constraint [1], is intentionally performed, thus
modifying the manipulator behavior when the action is intended,
e.g. allowing the user violation [20]. Conversely, during surgical
targeting tasks, activity recognition and online segmentation of
the procedures into simple subtasks could allow to modify the
modulation of the robot compliance with respect to the currently
performed activity [12,21].

A well-known approach to activity recognition is based on hid-
den Markov models (HMMs) [22]. HMMs  are double-stochastic
generative processes in which the observable output data is consid-
ered to be produced by a random variable taking values in a finite
state space. Because of the very rich model’s mathematical struc-
ture, HMMs  are successfully applied to speech recognition [22],
handwriting [23], gesture recognition [24,25] as well as motion
classification [26–28].

Based on the assumption that human motion actions can be split
into a set of primitives (called gestemes [12]), high-level complex
activities are considered to be produced by a temporal sequence of
those primitives. The need to provide a complete set of gestemes
have pointed out limitations in this approach, leading to an offline
segmentation of performed tasks [12]. Furthermore, attempts to
perform online classification were proved to be reliable (i.e. accu-
racy of ∼80%) only when observing a large percentage of the signal,
i.e. more than 60% [29]. Finally, once a fast and robust recognition of
the current surgeon’s activity is provided, a robotic system able to
adapt its behavior to the user’s intention should include a strategy
to smoothly switch among different control modalities [30].

In this work recognition of surgeon’s activities during hands-on
robotic surgery is aimed, to accordingly adapt the manipulator’s
behavior in order to augment the safety and intuitiveness of the
cooperation. An online algorithm is presented, able to provide a
robust and real-time recognition of surgeon’s activities without the
need to define gestemes. The underlying stochastic model [31,32]
fits the increments in the user’s guidance forces and the resulting
trajectory of the manipulator with the components of a Gaussian
mixture model (GMM). The high-level switching between the dif-
ferent components is captured using a set of continuous HMMs,  one
for each activity. This is a more structured approach with respect,

e.g. to a black-box approach based on deep feedforward and recur-
rent neural networks to model processes with unknown states
number and information length in time. Furthermore recurrent
neural networks stability is not granted.

The provided classification is then exploited to trigger different
dynamic behaviors of a torque-controlled manipulator. A strat-
egy to switch among different behaviors is also presented, that
modulates the robot stiffness and damping according to the user’s
activity.

The remainder of the paper is structured as follows. In Sec-
tion 2, first the stochastic model used to describe user’s actions
is described, then the classification algorithm used to discriminate
online among the activities is presented. In Section 3, the scenario
and the selected modeled activities are described together with a
strategy to smoothly modify the control of the assistant manipula-
tor. Experimental evaluation of both the classifier and the adaptive
robot control is presented in Section 4, encompassing a validation
protocol over a pool of twelve näive users. Finally, results are pre-
sented in Section 5 and discussed in Section 6.

2. Recognition of surgeon’s activity

2.1. Activity model

Surgeon’s activity during hands-on robotic surgery can be
described by human Cartesian driving forces (f) and resulting
manipulator’s Cartesian end-effector trajectory (x), expressed as
vectors of n-samples over time (t = 1, . . .,  n), i.e. f = (f1, . . .,  fn) and
x = (x1, . . .,  xn). Both f and x are dependent on the current activ-
ity, thus they can be combined in a sequence of n 6-dimensional
vectors dt [31], i.e.

d = (d1, . . .,  dn) =
(

x

f

)T

(1)

that describes the user’s action on the manipulator during cooper-
ation.

The vector d can be expressed by a sequence of increments with
respect to the current user’s action [32], i.e.

dt = dt−1 + �dt . (2)

Vector �dt represents the increment at time t and is modeled
as

�dt = Tzt +
√

Czt · wt (3)

thus being the emission of a 6-dimensional Gaussian distribu-
tion (low-level model) labeled zt ∈ {1, . . .,  M}  with Tzt mean
and Czt covariance. Vector wt is the sample of a zero-mean and
identity covariance Gaussian random vector. Eq. (2) is a switched-
dynamical system of type (d/dt)qt = fzt (t), [33], with fzt ≡ �dt and
�t  considered unitary, thus it is fully characterized by M Gaussian
distributions defined by the T = (T1, . . .,  TM) and C = (C1, . . .,  CM)
matrices, one at the time producing the current increment �dt.

At higher-level, the temporal sequence of low-level models
z = (z1, . . .,  zn) is considered as the sample of a Markov chain (high-
level model) in which each state represents one of the M low-level
models. Thus, each activity a ∈ {1, . . .,  A} is characterized by one
M-states continuous HMM  �a = {�a, Ba, T, C} in which the state
emission probability density parameters are in fact the T and C
matrices, �a represents the prior probability of each state of the
HMM  and Ba is the transition matrix that characterize the low-level
models switching for the activity a, i.e. p(z|a) = p(z|Ba, �a).

This two-level hierarchical stochastic model is described in
Fig. 1.
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