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Abstract

The integration between connectionist learning and logic-based reasoning is a longstanding foundational question in artificial intel-
ligence, cognitive systems, and computer science in general. Research into neural-symbolic integration aims to tackle this challenge,
developing approaches bridging the gap between sub-symbolic and symbolic representation and computation. In this line of work the
core method has been suggested as a way of translating logic programs into a multilayer perceptron computing least models of the pro-
grams. In particular, a variant of the core method for three valued Łukasiewicz logic has proven to be applicable to cognitive modelling
among others in the context of Byrne’s suppression task. Building on the underlying formal results and the corresponding computational
framework, the present article provides a modified core method suitable for the supervised learning of Łukasiewicz logic (and of a
closely-related variant thereof), implements and executes the corresponding supervised learning with the backpropagation algorithm
and, finally, constructs a rule extraction method in order to close the neural-symbolic cycle. The resulting system is then evaluated in
several empirical test cases, and recommendations for future developments are derived.
� 2017 Elsevier B.V. All rights reserved.

Keywords: Neural networks; Logic programs; Neural-symbolic integration; Cognitive modelling; Reasoning

1. Introduction

Neural-symbolic integration attempts to bridge the gap
between two prominent paradigms in artificial intelligence.
Symbolic AI, the first of the two, encompasses explicit
knowledge representation, logic programming and search-
based problem solving techniques which have been respon-
sible for many of the early successes in artificial intelligence
such as game playing, automated theorem proving and nat-
ural language processing (Hsu, 2002; Robinson &
Voronkov, 2001; Winograd, 1972). While the paradigm is
still very much alive in expert systems managing and rea-

soning over vast quantities of symbolic data, it is also at
times referred to as ‘‘good old-fashioned AI” or GOFAI
(Haugeland, 1985), having lost some of its appeal as its lim-
itations have become apparent. Learning from, and finding
structure in sets of noisy data is something symbolic AI lar-
gely fails at. Unfortunately this means that whole classes of
problems which are integral to a common conception of
intelligence, such as image and voice recognition, on a gen-
eral scale currently can hardly be addressed using symbolic
AI.1 Also, while (mostly non-monotonic) logic-based cog-
nitive modelling is still being pursued with valuable results,
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the brittleness of the corresponding models together with
their necessary restriction to high-level cognition (leaving
out the bigger part of the actual representation and pro-
cessing apparatus of human cognizers), are clear draw-
backs when compared to connectionist or statistical
approaches.

The second paradigm is that of machine learning. As the
name suggests, it refers to a variety of methods for learning
from data, artificial neural networks (ANN) being one
prominent group of these methods. Aided by a leap in pro-
cessing power and available data, machine learning has
been credited with most of the more recent accomplish-
ments in AI, from the now commonplace feat of handwrit-
ing recognition to self-driving cars and the fully
autonomous learning of computer games (Berger &
Rumpe, 2012; Mnih et al., 2015; Plamondon & Srihari,
2000). Promising as the paradigm may be, there are areas
in which, on its own, it performs very poorly. While the
learning of simple logical dependencies from data is
achieved with relative ease, the process becomes increas-
ingly difficult when higher order concepts are involved
(Garcez et al., 2015). Examples for the latter impasse are
numerous, including connectionist systems’ problems with
high-level visual analysis taking into account partial occlu-
sion, light source identification, or shadow prediction, or
with higher-level inference such as the recognition of inten-
tions of depicted agents. Also, as knowledge is represented
in connectionist systems in a distributed fashion that is
hard to interpret from an outside perspective, it is usually
difficult to provide background knowledge in a format
which the machine learning algorithm can use, or to extract
learned features from a network for instance for verifica-
tion purposes. All of these are problems that often become
trivial when tackled with a symbolic system.

Much stands to be gained from a unification of the two
paradigms that could cancel out their respective weak spots
and highlight their strengths. Neural-symbolic integration
(Garcez, Broda, & Gabbay, 2002) offers some ideas in
how this may be achieved, centering around the concept
of the neural-symbolic cycle (see Fig. 1). The cycle contains
two reasoning systems. One is symbol-based, utilizing
available expert knowledge, and the other is a connection-
ist system or ANN, which learns from data. The challenge
of interfacing these systems is twofold. Coming from the
symbolic side, the first task is to find a way of translating

the existing symbolic knowledge into the connectionist sys-
tem, finding a representation that is appropriate for the
network. Secondly, one needs to devise methods for
extracting the information gained by the connectionist sys-
tem through learning and convert it back into a clean sym-
bolic format. Equipped with these processes of
representation and extraction the system as a whole is cap-
able of incorporating both background knowledge and
training data as either become available.

When asked about the feasibility of integrating both
paradigms, the human brain and mind serve as prime
examples and proof of concept. The brain has a neural
structure which operates on the basis of low-level process-
ing of perceptual signals, but cognition also exhibits the
capability to efficiently perform abstract reasoning and
symbol processing; in fact, processes of the latter type are
taken to provide the foundations for thinking, decision-
making, and other mental activities (Fodor & Pylyshyn,
1988). It is precisely this seamless coupling between learn-
ing and reasoning which is commonly considered the basis
for intelligence in humans—see also, e.g., Valiant, 2013, p.
163: ‘‘While I do not regard intelligence as a unitary phe-
nomenon, I do believe that the problem of reasoning from
learned data is a central aspect of it.”—and, in close anal-
ogy, quite plausibly also for the (re-) creation of cognitive
capacities up to human-level intelligence in artificial
systems.

Returning to the neural-symbolic cycle discussed above,
it should be made clear, that the task of constructing such a
cycle rapidly increases in difficulty when raising the expres-
sive capacities of the involved systems. There are
approaches for fragments of first order logic (Bader,
Hitzler, Hölldobler, & Witzel, 2007; Gust, Kühnberger, &
Geibel, 2007), but most results focus on various proposi-
tional logics. Furthermore, extraction algorithms for con-
nectionist systems tend to be intractable. So while the
general method of the field can be described in a few pages,
the underlying problems are hard and there is still a long
way to go before neural-symbolic integration may be
applied to state-of-the-art methods of either paradigm.

As one of the currently most prominent and best under-
stood methods, Hölldobler’s and Kalinke’s core method

(Hölldobler & Kalinke, 1994) has since been developed as
a neural-symbolic system for, among others, propositional
modal (d’Avila Garcez, Lamb, & Gabbay, 2007) and cov-

Fig. 1. A conceptual overview of the neural-symbolic cycle (as introduced in Bader and Hitzler (2005)).
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