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Abstract

Unsupervised learning of a generalizable model of the visual appearance of humans from video data is of major importance for com-
puting systems interacting naturally with their users and others. We propose a step towards automatic behavior understanding by mak-
ing the posture estimation cycle more autonomous. The system extracts coherent motion from moving upper bodies and autonomously
decides about limbs and their possible spatial relationships. The models from many videos are integrated into a meta-model, which shows
good generalization with respect to different individuals, backgrounds, and attire. This model allows robust interpretation of single video
frames without temporal continuity and posture mimicking by an android robot.
� 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Humans show unmatched expertise in visually analyzing
and interpreting the movements of other humans. This skill
of social perception is one of the foundations of effective
and smooth interaction of humans inhabiting a complex
environment. The benefits of machines capable of inter-
preting human motion would be enormous: applications
in health care, surveillance, industry and sports (Gavrila,
1999; Moeslund, Hilton, & Krüger, 2006) promise a broad
market. Despite significant effort (Poppe, 2007) to transfer
human abilities in motion estimation and behavioral inter-
pretation to synthetic systems, automatically looking at

people (Gavrila, 1999) remains among the ‘most difficult
recognition problem[s] in computer vision’ (Mori, Ren,
Efros, & Malik, 2004) there is still no technical solution
matching human competency in vision-based motion cap-

turing (VBMC). Furthermore, humans can understand
body poses even in still images.

Artificial vision systems must be enhanced by learning
lessons from human perception. Here, we present a system
that is able to acquire conceptual models of the upper
human body in a completely autonomous manner: the
learning procedures are based on only a few general princi-
ples, namely the gestalt rule of ‘‘common fate”, which
states that coherently image parts with coherent motion
belong to a single object, and the rule that object properties
persistent over time are important for recognizing the
object, while malleable ones should be ignored. This strat-
egy significantly reduces human workload and allows self-
optimization of the generated models. While autonomous
model learning and knowledge agglomeration take place
in simple scenarios, the conceptual nature of the retrieved
body representations allows for generalization to more
complex scenarios and holds opportunities for model adap-
tation and enhancement loops, which might perform contin-
uous, non-trivial learning as found in the human brain. A
much simpler example of such a system has been presented
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by Prodöhl, Würtz, and von der Malsburg (2003), where a
neural network learns the gestalt rule of collinearity from
common fate.

Fig. 1 provides a schematic overview of the system and
is referred to throughout the paper for all components. In
Section 2 we give an overview of VBMC approaches that
have been considered or used in this work and discuss their
strengths and weaknesses. Section 3 describes the details of
learning a body model from a single video of human
motion. This consists of the following subsystems:

� A central requirement for autonomous model learning is
the exclusion of irrelevant features. This is achieved by
motion-based background elimination (Section 3.1,
Fig. 1(c)).

� The ‘‘common fate” rule is implemented by measuring
and clustering point trajectories to select coherently
moving parts, called limb patterns, and constraints on
relative motion (Section 3.1, Fig. 1(d)).

� For a matchable description of limbs we extract skele-
tons from those limb patterns (Section 3.2, Fig. 1(e)).

� The next step is the generation of limb templates to be
filled with color (Fig. 1j), shape (Fig. 1i), and texture
(Fig. 1k) (Section 3.3).

� Single limbs are combined into a complete body model,
which describes the encountered relative movements and
their constraints as well as the appearance of each limb
template to a pictorial structure (Section 3.4, Fig. 1(e)).

Each of these subsystems is constructed by using rele-
vant techniques from the literature described in Section 2,
and we describe all modifications that were necessary for
autonomous learning.

A general model must include more than a single video
in order to capture possible variations in appearance and
movements. Therefore, in Section 4 many such models
are combined into a meta-model, which captures the
invariant cues of the single models. In Section 5 we test
the learned meta-model on still images with different back-
grounds, individuals, attire, etc. This is a much harder task
than evaluating more videos of a single person, and the
failures point to ways to improve the system by adding
more training. We provide test results on single images
varying considerably in person, attire, and background.
Then we show how the learned representations can be used
to mimick observed postures on a humanoid robot. The
paper ends with a brief discussion.

2. Previous work in vision-based human motion capturing

Following Poppe (2007), VBMC methods can be classi-
fied into model-based, generative approaches and model-

free, discriminative methods (cf. also (Navaratnam,
Fitzgibbon, & Cipolla, 2006)). Model-based schemes incor-
porate top-down and bottom-up techniques, while the
model-free domain employs learning-based and exemplar-

based pose estimation.

To stay in scope, we leave an in-depth discussion of top-
down and discriminative techniques to Poppe (2007) or
Walther (2011). Bottom-up solutions form an important
mainstay of our own approach and are thus investigated
more closely. Nevertheless, our focus is on autonomous,
fully unsupervised VBMC strategies.

2.1. Bottom-up posture estimation

A generic bottom-up (or combinatorial (Roberts,
McKenna, & Ricketts, 2007)) posture estimation system
follows the principle formulated by Sigal and Black
(2006a): ‘measure locally, reason globally.’ Local measure-
ment treats the human body as an ensemble of ‘quasi-inde
pendent’ (Sigal, Isard, Sigelman, & Black, 2003) limbs,
which much alleviates the complex model coupling inher-
ent in top-down approaches. Imposing independence, ‘im-
age measurements’ (Sigal et al., 2003) of single limbs can be
performed separately by a dedicated limb detector (LD)
(Ramanan, Forsyth, & Zisserman, 2007; Sigal & Black,
2006b), which moves the burden of matching a given body
part model to some well-chosen image descriptors
(Kanaujia, Sminchisescu, & Metaxas, 2007; Poppe, 2007).
The selection of appropriate images descriptors as well as
construction and application of LDs require domain
knowledge of and concept building by human supervisors.
For many object categories, histograms of oriented gradi-
ent (HOG) features seem to be a good choice, allowing
object classification by linear discriminant analysis
(Hariharan, Malik, & Ramanan, 2012).

To organize the data from local measurements, pending
inter-limb dependencies come into play during global rea-
soning. ‘Assemblies’ (Moeslund et al., 2006) of detector
responses are retrieved that comply well with kinematically
meaningful human body configurations. The majority of
bottom-up systems employ graphical models (Sigal &
Black, 2006a) (GMs) to encode human body assemblies:
each node in the model’s graph structure correlates to a
dedicated body part, whereas the graph’s edges encode
(mostly) ‘spring-like’ (Lan & Huttenlocher, 2005; Sigal
et al., 2003) kinematic relationships between single limbs.

Using GMs for global inference, a configuration
becomes more ‘human-like’ (Felzenszwalb &
Huttenlocher, 2000) if all LDs return low matching cost
and the ‘springs’ between the body parts are close to their
resting positions. This can conveniently be formulated by
means of an energy functional, whose global minimum rep-
resents the most probable posture of the captured subject.
However, minimization for arbitrary graphs and energy
functions is NP-hard (Felzenszwalb & Huttenlocher,
2005). Thus, Felzenszwalb and Huttenlocher (2000) pro-
pose to restrict the graphs to be tree-like and further
restrictions on the energy function to allow for computa-
tionally feasible posture inference using dynamic program-
ming (Felzenszwalb & Huttenlocher, 2005). We follow
this approach by boosting the pictorial structure (Fischler
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