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Abstract

Regier, Kay, and Khetarpal report the results of computer simulations that cluster color stimuli on the basis of their coordinates in
CIELAB space, one of two commonly used perceptual color spaces. Regier and coauthors find partitions of those stimuli that are strik-
ingly similar to the way actual color lexicons partition color space. They do not argue for the custom-made clustering method used in
their simulations, nor for the assumption of CIELAB space. The present paper aims to answer the question to what extent their com-
putational results depend on these assumptions. It does this by applying a great variety of known clustering methods to Regier et al.’s
stimuli, and by assuming not only CIELAB space but also CIELUV space, the other main color space.
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1. Introduction

There is an ongoing debate about the metaphysical sta-
tus of color categories. According to some theorists, color
categories are organized around a set of universal focal col-
ors (Berlin & Kay, 1969/1999), while other theorists hold
that color categories are culturally relative, grounded in
linguistic conventions (Roberson, 2005; Roberson,
Davies, & Davidoff, 2000). Evidence from linguistic
anthropology is mixed, showing universal tendencies in
color categorization across languages, but also deviations
from those tendencies (Berlin & Kay, 1969/1999; Cook,
Kay, & Regier, 2005; Lindsey & Brown, 2009).

Jameson and D’Andrade (1997) put forward the idea
that both the universal tendencies and the deviations might
be due to the interaction of a cognitively motivated prefer-
ence for informative categorizations with a perceptual
color space that is irregularly shaped and as a result
can be carved up into partitions with different degrees of
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informativeness. Both elements in this explanation could
be argued to be culture-independent—the first possibly
being anchored in our innate cognitive makeup, the
second in our perceptual apparatus—yet their supposed
interaction may leave some room for cultural influences
in categorization, given that different categorizations can
achieve roughly the same high level of informativeness.
Thereby, Jameson and D’Andrade offer an interesting
middle ground between the “universalist” and “‘relativist”
positions vis-a-vis color categorization.

Jameson and D’Andrade’s proposal has been tested
computationally by Regier, Kay, and Khetarpal (2007),
who implemented the notion of informative categorization
in a clustering method and applied this, in simulations, to
the stimuli used for the anthropological studies cited
above. These simulations yielded partitions of color space
strikingly similar to lexical partitions of that space in many
languages from around the world, a finding that supports
Jameson and D’Andrade proposed explanation of the pres-
ence of universal tendencies in color categorization. The
simulations also showed, however, that rather different
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looking partitions can be more or less equally informative
(in the relevant sense), thus supporting Jameson and
D’Andrade’s explanation of the registered differences in
color categorization.

Jameson and D’Andrade understand the notion of
informative categorization in terms of similarity and dis-
similarity. Specifically, on their definition, a categorization
is more informative the more similar items within the same
category are to each other and the more dissimilar items
across categories are to each other. Regier et al.’s (2007)
clustering method formalizes this principle in a straightfor-
ward way. It is to be noted, however, that by now a bewil-
dering variety of clustering methods is available, all of
which can be said to explicate the same broad idea of
jointly maximizing within-cluster similarity (or within-
similarity, for short) and across-cluster dissimilarity
(across-dissimilarity) in slightly different, yet seemingly
equally legitimate, ways. Regier and colleagues do not
compare their custom-built clustering method with any of
the clustering methods that are available off the shelf, nor
do they explain why they use their particular method rather
than any of the others.

This raises a number of questions. First, have Regier
and colleagues given us a genuinely new clustering method,
or does it boil down to one we already had, in the sense
that the two methods will always yield the same clustering
outputs? And if the former, to what extent do Regier
et al.’s results in the color domain depend on the particu-
larities of their method? Might we be able to improve upon
those results by using any of the other methods, in the
sense that other methods might yield categorizations of
color space that more accurately reflect categories in actual
use by humans? We address these questions by applying a
great variety of clustering methods to the stimuli of Regier
and colleagues’ study and comparing the outputs to the rel-
evant anthropological color-naming data.

There is another dimension along which we would like
to generalize Regier, Kay, and Khetarpal’s results. These
researchers apply their clustering method to color stimuli
as specified by their coordinates in CIELAB space, which
is one of two standard and widely used perceptual color
spaces, the other one being CIELUV space. Despite the
similarity of these spaces, differences between them are
not so minute that they can be guaranteed to have had
no noteworthy effect on Regier and colleagues’ results.
We investigated what effect (if any) the assumption of CIE-
LAB space may have had by carrying out our computa-
tions separately for each of the two color spaces.

2. Theoretical background

The data for the earlier-cited anthropological studies
were gathered by asking native speakers of various
unwritten languages to name the color of each of the
330 Munsell chips shown in Fig. 1 (henceforth often
simply referred to as “‘the chips”), which consist of 320
chromatic chips and 10 achromatic chips, the Ilatter

ranging from black to white through various shades of
gray. The columns in Fig. 1 represent equally spaced
Munsell hues, and the rows represent levels of value;
the chromatic chips are all at the maximum saturation
available for their hue—value combination.

These chips also served as the items on which Regier
et al. (2007) ran their computer simulations. More
exactly, they used the chips as specified by their CIELAB
coordinates. As mentioned, CIELAB space—or CIE
1976 L'a"b" space, as it is known more officially—is
one of the two most commonly used perceptual color
spaces; CIE 1976 Lu"v" space (or “CIELUV space”) is
the other commonly used one. Both spaces are intended
to be perceptually uniform in that distances within them
are meant to indicate perceived degrees of similarity
among colors." Most color researchers consider these
spaces to be fairly successful in achieving their aim,
though it is known that neither space is perfect (see
Fairchild, 2013, Ch. 10).

One gets an impression of both the differences between
these spaces and the irregularity of each by considering
the locations of the Munsell chips in them, shown in
Fig. 2.2 Looking at this figure, one understands why color
space is sometimes described as “a spindle” (e.g.,
Girdenfors, 2000, 10f). However, given either space, that
spindle is not completely symmetric. Far from it, in fact:
the figure clearly brings out a large bump in the yellow/
green” region as well as bumps in the purple/blue and
red regions, in both CIELAB and CIELUYV space. (Here
it is important to recall that the chromatic chips are all at
maximum saturation so that they lie on the surfaces of
the spaces.)

If color space were perfectly symmetric, any rotation of
a partition of that space would be as informative (in Jame-
son and D’Andrade’s sense) or well-formed (as Regier and
colleagues call it) as any other rotation. But it is precisely
because of the noted irregularities that, in principle, one
partition can be more informative than all others. In
Regier et al. (2007), this claim is made precise with the help
of the following definition of well-formedness: Let P be
some partition of the chips shown in Fig. 1. Then the
function S,

spy= >

x,y:catp(x)=catp(y)

sim(x, y),

! This is what makes these spaces perceptual color spaces, in contrast to,
for instance, the RGB and CM YK spaces, which serve different purposes.
See Malacara (2002, Ch. 6), for a mathematical specification of the
CIELUV and CIELAB spaces and for an explanation of how they
formally relate to each other as well as to other well-known color spaces.

2 The CIELAB coordinates of the 330 chips are available at the WCS
website, http://wwwl.icsi.berkeley.edu/wes/. To obtain the corresponding
CIELUY coordinates, we used the ColorConvert function of Mathematica
10.

3 For interpretation of color in Fig. 2, the reader is referred to the web
version of this article.
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