
Engineering Applications of Artificial Intelligence 65 (2017) 388–399

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Practical reasoning with norms for autonomous software agents
Zohreh Shams a,*,1, Marina De Vos a, Julian Padget a, Wamberto W. Vasconcelos b

a Department of Computer Science, University of Bath, BA2 6AH, UK
b Department of Computing Science, University of Aberdeen, AB24 3UE, UK

a r t i c l e i n f o

Keywords:
Intelligent agents
Practical reasoning
Norms
Goals

a b s t r a c t

Autonomous software agents operating in dynamic environments need to constantly reason about actions in
pursuit of their goals, while taking into consideration norms which might be imposed on those actions. Normative
practical reasoning supports agents making decisions about what is best for them to (not) do in a given situation.
What makes practical reasoning challenging is the interplay between goals that agents are pursuing and the
norms that the agents are trying to uphold. We offer a formalisation to allow agents to plan for multiple goals
and norms in the presence of durative actions that can be executed concurrently. We compare plans based on
decision-theoretic notions (i.e. utility) such that the utility gain of goals and utility loss of norm violations are
the basis for this comparison. The set of optimal plans consists of plans that maximise the overall utility, each
of which can be chosen by the agent to execute. We provide an implementation of our proposal in Answer Set
Programming, thus allowing us to state the original problem in terms of a logic program that can be queried for
solutions with specific properties.

© 2017 Published by Elsevier Ltd.

1. Introduction

Reasoning about what to do – known as practical reasoning – for an
agent pursuing different goals is a complicated task. When conducting
practical reasoning, the agents might exhibit undesirable behaviour that
was not predicted. The necessity of controlling undesirable behaviour
has given rise to the concept of norms that offer a way to define ideal
behaviour for autonomous software agents in open environments. Such
norms often define obligations and prohibitions that express what the
agent is obliged to do and what the agent is prohibited from doing.

Depending on their computational interpretation, norms can be
regarded as soft or hard constraints. When modelled as hard constraints,
the agent subject to the norms is said to be regimented, in which case
the agent has no choice but to blindly follow the norms (Esteva et al.,
2001). Although regimentation guarantees norm compliance, it greatly
restricts agent autonomy. Moreover, having individual goals to pursue,
self-interested agents might not want to or might not be able to comply
with the norms imposed on them. Conversely, enforcement approaches,
in which norms are modelled as soft constraints, leave the choice of
complying with or violating the norms to the agent. However, in order
to encourage norm compliance, there are consequences associated,
namely a punishment when agents violate a norm (López y López et

* Corresponding author.
E-mail addresses: z.shams@bath.ac.uk (Z. Shams), m.d.vos@bath.ac.uk (M. De Vos), j.a.padget@bath.ac.uk (J. Padget), wvasconcelos@acm.org (W.W. Vasconcelos).

1 Present address: Computer Laboratory, University of Cambridge, CB3 0FD, UK.

al., 2005; Pitt et al., 2013) or a reward when agents comply with a
norm (Aldewereld et al., 2006). In some approaches (e.g., Aldewereld
et al., 2006; Alrawagfeh and Meneguzzi, 2014; Oren et al., 2011) there
is a utility gain/loss associated with respecting norm or not, whereas
in the pressured norm compliance approaches (e.g., López y López et al.,
2005), the choice to violate a norm or not is determined by how the
norm affects the satisfaction or hindrance of the agent’s goals.

Existing work (e.g. Oren et al., 2011; Panagiotidi et al., 2012a;
Criado et al., 2010; Meneguzzi et al., 2015) on normative practical
reasoning using enforcement either consider plan generation or plan
selection where there is a set of pre-generated plans available to the
agent. In these works, the attitude agents have towards norms is often
one of compliance, meaning that their plans are often selected or,
in some approaches, customised, to ensure norm compliance (e.g.,
Kollingbaum, 2005; Alechina et al., 2012; Oren et al., 2011). We argue
that in certain situations, an agent might be better off violating a norm
which, if followed, would make it impossible for the agent to achieve
an important goal or complying with a more important norm.

In this paper we set out an approach for practical reasoning that
considers norms in both plan generation and plan selection. We extend
current work on normative plan generation such that the agent attempts
to satisfy a set of potentially conflicting goals in the presence of norms,

http://dx.doi.org/10.1016/j.engappai.2017.07.021
Received 2 October 2016; Received in revised form 4 March 2017; Accepted 25 July 2017
0952-1976/© 2017 Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.engappai.2017.07.021
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2017.07.021&domain=pdf
mailto:z.shams@bath.ac.uk
mailto:m.d.vos@bath.ac.uk
mailto:j.a.padget@bath.ac.uk
mailto:wvasconcelos@acm.org
http://dx.doi.org/10.1016/j.engappai.2017.07.021


Z. Shams et al. Engineering Applications of Artificial Intelligence 65 (2017) 388–399

as opposed to conventional planning problems that generate plans for
a single goal (Oren et al., 2011; Panagiotidi et al., 2012a). Such an
extension is made on top of STRIPS (Fikes and Nilsson, 1971), the most
established planning domain language that lays the foundation of many
automated planning languages. Additionally, since in reality the actions
are often non-atomic, our model allows for planning with durative ac-
tions that can be executed concurrently. Through our practical reasoning
process agents consider all plans (i.e., sequences of actions), including
those leading to norm compliance and violation; each plan gets an
associated overall utility for its sequence of actions, goals satisfied,
and norms followed/violated, and agents can decide which of them to
pursue by comparing the relative importance of goals and norms via
their utilities. The plan an agent chooses to follow is not necessarily
norm-compliant; however, our mechanism guarantees that the decision
will maximise the overall plan utility, and this justifies the occasional
violation of norms in a plan. Both plan generation and plan selection
mechanisms proposed in this paper are implemented using Answer Set
Programming (ASP) (Gelfond and Lifschitz, 1988).

ASP is a declarative programming paradigm using logic programs
under Answer Set semantics. In this paradigm the user provides a
description of a problem and ASP works out how to solve the problem by
returning answer sets corresponding to problem solutions. The existence
of efficient solvers to generate the answers to the problems provided
has increased the use of ASP in different domains of autonomous agents
and multi-agent systems such as planning (Lifschitz, 2002) and norma-
tive reasoning (Cliffe et al., 2006; Panagiotidi et al., 2012b). Several
action and planning languages such as event calculus (Kowalski and
Sergot, 1986),  (and its descendants  and  (Gelfond and Lifschitz,
1998a), Temporal Action Logics (TAL) (Doherty et al., 1998), have been
implemented in ASP (Lee and Palla, 2012, 2014), indicating that ASP
is appropriate for reasoning about actions. This provides motive and
justification for an implementation of STRIPS (Fikes and Nilsson, 1971)
that serves as the foundation of our model in ASP.

This paper is organised as follows. First we present a scenario in
Section 2 which we use to illustrate the applicability of our approach.
This is followed by the formal model and its semantics in Section 3. The
computational implementation of the model is provided in Section 4.
After the discussion of related work in Section 5, we conclude in
Section 6.

2. Illustrative scenario

To illustrate our approach and motivate the normative practical
reasoning model in the next section, we consider a scenario in which
a software agent acts as a supervisory system in a disaster recovery
mission and supports human decision-making in response to an emer-
gency. The software agent’s responsibility is to provide humans with
different courses of actions available and to help humans decide on
which course of actions to follow. In our scenario, the agent is to plan
for a group of human actors who are in charge of responding to an
emergency caused by an earthquake. The agent monitors the current
situation (e.g., contamination of water, detection of shocks, etc.) and
devises potential plans to satisfy goals set by human actors. In our
scenario we assume the following two goals:

1. Running a hospital to help wounded people: this goal is fulfilled
when medics are present to offer help and they have access to
water and medicines.

2. Organising a survivors’ camp: this is fulfilled when the camp’s
area is secured and a shelter is built.

We also assume the two following norms that the agent has to consider
while devising plans to satisfy the goals above:

1. It is forbidden to built a shelter within 3 time units of detecting
shocks. The cost of violating this norm is 5 units.

2. It is obligatory to stop water distribution for 2 time units once
poison is detected in the water. The cost of violating this norm
is 10 units.

The formulation of this scenario is provided in Appendix A.

3. A model for normative practical reasoning

We use STRIPS (Fikes and Nilsson, 1971) as the basis of our
normative practical reasoning model. In STRIPS, a planning problem
is defined in terms of an initial state, a goal state and a set of operators
(e.g. actions). Each operator has a set of preconditions representing the
circumstances/context in which the operator can be executed, and a set
of postconditions that result from applying the operator. Any sequence
of actions that satisfies the goal is a solution to the planning problem.
In order to capture the features of the normative practical reasoning
problem that we are going to model, we extend the classical planning
problem by:

(i) replacing atomic actions with durative actions: often the nature of
the actions is non-atomic, which means that although executed
atomically in a state, the system state in which they finish
executing is not necessarily the same in which they started
(Nunes et al., 1997). Refinement of atomic actions to durative
actions reflects the real time that a machine takes to execute
certain actions.

(ii) Allowing a set of potentially inconsistent goals instead of the
conventional single goal: the issue of planning for multiple goals
distributed among distinct agents is addressed in collaborative
planning. We address this issue for a single agent.

(iii) Factoring in norms: having made a case for the importance of
norms in Section 1, we combine normative and practical reason-
ing. Just like goals, a set of norms is not necessarily consistent,
making it potentially impossible for an agent to comply with all
norms imposed on it.

A solution for a normative practical reasoning problem that features (i),
(ii) and (iii) is any sequence of actions that satisfies at least one goal. The
agent has the choice of violating or complying with norms triggered by
execution of a sequence of actions, while satisfying its goals. However,
there may be consequences either way that the agent has to foresee.

We explain the syntax and semantics of the model in Section 3.2–3.6.
First we present the architecture of our envisaged system in the next
section.

3.1. Architecture

The architecture, depicted in Fig. 1, shows how re-planning can
be considered if a plan in progress is interrupted due to a change
in circumstances. This change can be the result of a change in the
environment or unexpected actions of other agents in the system. As
is customary in multi-agent systems, the agent will regularly check the
viability of its plan. The frequency depends on the type of system the
agent is operating in, the agent’s commitment to its intentions, and the
impact of re-computation on the agent’s overall performance.

When an agent decides that re-planning is in order, it will take the
state in which the plan is interrupted as the initial state for the new
plan and its current goal set as the goals to plan towards. The current
goal set does not have to be the same as the goal set the original plan
was devised for. Goals can already be achieved in the interrupted plan,
previous goals may no longer be relevant and others may have been
added. Even if the goals remain the same, the resulting new optimal
plan might change due to changes in the state of the system. Similarly,
there might be new norms imposed on the agent that will have to be
considered in replanning.

We cater for agents which need to create their own individual plans.
However, in doing so, in multi-agent scenarios agents will inevitably

389



Download English Version:

https://daneshyari.com/en/article/4942610

Download Persian Version:

https://daneshyari.com/article/4942610

Daneshyari.com

https://daneshyari.com/en/article/4942610
https://daneshyari.com/article/4942610
https://daneshyari.com

