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ABSTRACT

As one of the most important preprocess in pattern recognition, the dimensionality reduction is widely applied
to the real-world tasks. In practice, there exist three corresponding well-known models, including the Locality
Preserving Projection (LPP), the Linear Discriminant Analysis (LDA), and the Maximum Margin Criterion (MMC).
Even though several previous works have revealed the partial relationship among the three, there are no further
researches. In this paper, from the perspective of LPP, the complete connections among the three models are
demonstrated, and then a new framework named GMFLLM is proposed to unify them. Further, since it is possible
to utilize the proposed framework as an underlying platform to design more dimensionality reduction variants
of LPP, fourteen new variants developed from GMFLLM are approached and investigated in the experiment.
Moreover, the best of them, named as the Between-class concerned DLPP/MMC (BDLPP/MMC), is selected
to compare with the other seven existing state-of-the-art methods on six image datasets. Results validate the

effectiveness of BDLPP/MMC so as to show the generalization of GMFLLM.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Comprehensive applications of manifold learning in pattern recogni-
tion have been witnessed in the last decade (Chang et al., 2003; Lee et
al., 2003). Developed from the Laplacian Eigenmaps (Belkin and Niyogi,
2001), the Locality Preserving Projection (LPP) is widely used in pat-
tern recognition preprocessing tasks, such as dimensionality reduction
(Duda et al., 2012) and graph embedding (Yan et al., 2005, 2007).
Differently from the early non-linear techniques, such as the Locally
Linear Embedding (Roweis and Saul, 2000) and Isomap (Tenenbaum
et al., 2000) that confront the challenge to evaluate the maps on test
datasets He et al. (2005), LPP could be unsupervised and pays more
attention to preserving the relationship between every two samples.
From the perspective of LPP, if two samples locate close to each other
in the original space, they should still be close to each other after the
projection. As the result, the solution from LPP is concise but powerful.
However, two shortcomings remain. Firstly, LPP is sensitive to the
neighborhood size. Secondly, LPP suffers from the small sample size
problem, which means that the dimensionality of samples is larger than
the number of samples so that the data matrix turns to be singular. Since
inversing the data matrix is a necessary operation for LPP, overcoming
the small sample size problem becomes imperative.
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Existing improvements to address the mentioned issues for LPP are
categorized into four groups in this paper. The first group contains pre-
processings and extensions for LPP, the second one is about the internal
improvements, the third one is the external improvements, while the last
one is to combine the internal and the external improvements together.
Brief retrospect to each group is given in turn below.

(1) For the first group, there are improvements focusing on generating
more suitable samples for the subsequent manipulation. For instance,
in both of the Diagonal and Secondary Diagonal LPP (DiaLPP & SDi-
aLPP) (Veerabhadrappa and Rangarajan, 2010) and their extensions,
the Diagonal and Weighted Two-Dimensional Discriminant LPP (Dia-
DLPP & W2D-DLPP) (Lu and Tan, 2011), the original input images are
transformed to diagonal ones. This transformation essentially finds a
novel way to assign the appropriate weight to each pixel of the original
image. Additionally, the other improvements belonging to the group
aim to introduce the conventional LPP into new application scenarios.
As a trial of bringing LPP into the sub-space learning, the original face
images are partitioned to sub-patterns and brought into the Adaptively-
weighted Sub-pattern LPP (Aw-SpLPP) (Wang et al., 2010), in order to
be separately extracted (Wang et al., 2010).

(2) The second group makes changes under the original model of LPP
itself and a majority of the existing improvements in LPP belong to
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this group. They could be further divided into four parts. The methods
from the first part improve LPP in the affinity matrix level, i.e., they
concern about the distance measurements or the connection constraints
between samples. The representative models are listed as follows: For
the Bilateral LPP (BLPP) (Li et al., 2015), a filtering term is added
behind the Euclidean distance function of the model to balance the
weight of each edge of samples; For the Enhanced LPP (ELPP) (Yu et al.,
2011), one robust path is introduced into the calculation of the affinity
matrix, in order to overcome the sensitivity of LPP to noise and outlier;
For the Locally Discriminating Projection (LDP) (Zhao et al., 2006),
the supervised way is adopted to build edges of samples. Furthermore,
methods from both the second and the third part aim to modify LPP
in the model level, but in different ways. One way is to kernelize LPP,
containing methods such as the Supervised Kernel LPP (SKLPP) (Cheng
et al., 2005) and the Kernel LPP (KLPP) (Feng et al., 2006); the other
way is to matrixize LPP, including the Two-Dimensional LPP (2D-LPP)
(Chen et al., 2007), the Two-Dimensional Discriminant LPP (2D-DLPP)
(Zhi and Ruan, 2008), the Two-Dimensional Discriminant Supervised
LPP (2DDSLPP) (Xu et al., 2009), the Sparse Two-Dimensional Dis-
criminant LDP (S2DLDP) (Lai et al., 2011), and the Two-Dimensional
Regularized LPP (2DRLPP) (Zhou et al., 2015). Moreover, the methods
from the fourth part utilize special optimization ways to overcome the
small sample size problem and thus are in the algorithm level. The
representative models include the Optimal LPP (OLPP) that transforms
the singular eigen-system computation to eigenvalue decomposition
problems without losing any discriminative information (Chen et al.,
2011), the Exponential LPP (EXLPP) that utilizes the matrix exponential
into Laplacian matrix to keep it nonsingular (Wang et al., 2011), and
both of the Expression-Specific LPP (ES-LPP) and the Class-Regularized
LPP (CR-LPP) that consider priori global and local information to avoid
the singularity (Chao et al., 2015).

(3) The third group seeks the cooperation between LPP and the other
feature extraction models (He et al., 2005; Lu et al., 2010). Available
models include the Linear Discriminant Analysis (LDA) (Belhumeur et
al., 1997) and the Maximum Margin Criterion (MMC).! According to
the degree of the cooperation, these improvements could be further
distinguished as two parts. The methods in the first part replace terms
in LPP without changing its criterion. For instance, in the method called
Discriminant LPP (DLPP) (Yu et al., 2006), the Laplacian term X LX" of
LPP is preserved, while the original diagonal matrix D is replaced with
another Laplacian matrix deduced from centroids of classes. Moreover,
in the Fisher LPP (FLPP) (Laadjel et al., 2015), a newly-defined matrix
L, is utilized to build the neighbor-graph for samples from different
classes . On the other hand, the methods in the second part select
the maximum margin based criterion (Li et al., 2006) rather than the
generalized rayleigh quotient (Bathe and Wilson, 1976) as the criterion
of LPP. One typical improvement is to connect terms generated by DLPP
through the maximum margin based criterion, so as to construct the
DLPP based on the Maximum Margin Criterion (DLPP/MMC) (Lu et
al., 2010). Furthermore, one of the three novel models proposed in the
literature (Xu et al., 2010), which is abbreviated as nLPP3 in this paper
for convenience, considers to take a similar criterion as MMC to build
the framework, in order to avoid the singularity. Practices validate the
effectiveness of methods from both parts.

(4) Methods in the fourth group introduce internal improvements into
external ones. For instance, according to the Null-space DLPP (NDLPP)
(Yang et al., 2008), both the geometrical and discriminant structures
of the data manifold are encoded to make the eigenvalue problem
solved in null space. Furthermore, in the Regularized Locality Preserving
Discriminant Analysis (RLPDA) (Gu et al., 2011), the eigenspace of the
locality preserving within-class scatter matrix is first decomposed into

1 The abbreviation “MMC” is used for both the model and the criterion of the model in
Li et al. (2006). To avoid ambiguity, the abbreviation is only used for the model, while the
full name “the maximum margin based criterion” is used for the corresponding criterion
in this paper.
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Fig. 1. Relationship graph of LPP-related methods. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

three subspaces, and then the three subspaces are regularized differently
according to their predicted eigenvalues.

Fig. 1 is designed to present the relationship among the mentioned
LPP-related improvements. In the legend of the figure, “Siblings” means
that the methods connected by the line share relationship with each
other, while “Application” means that the method could be applied to
its corresponding aspect through an arrow. To be clear, different groups
of methods are in various colors.

From both the review and the figure, four main points should
be seen: (1) The external improvements seem making more essential
changes than the internal ones, because the former mainly focuses
on the criterion or the term of LPP. (2) The internal improvements
seem convenient to be introduced into the external ones. Thus, when
designing a well-functioned model for LPP, it is advised to find a suitable
criterion first, and then consider the construction of the affinity matrix.
(3) As the typical methods for the dimensionality reduction tasks, LDA
and MMC are suitable to collaborate with LPP to generate external
improvements. (4) LDA and MMC adopt different criterions for their
optimization and both of them seem sharing relationship with LPP.

To our best knowledge, there are still not enough researches dis-
cussing either the criterion selection of LPP or the complete relationship
among LPP, LDA, and MMC (Yan et al., 2005, 2007). Furthermore, there
are not any researches proposing a general framework to unify the three
main dimensionality reduction models. Since the external improvements
seem promising in practice, it becomes necessary to further investigate
the condition that combines LPP, LDA and MMC together.

Motivated by the deficiency of the related researches, the complete
discussion on the relationship among LPP, LDA, and MMC, will be given
in this paper. Thereafter, a general manifold framework abbreviated
as GMFLLM is proposed to unify all of the three models. In Fig. 1,
GMFLLM is depicted and enclosed by the dashed line. GMFLLM could
be distinguished from the existing methods by not only revealing the
relationship among some well-known LPP-related models, but also
offering chance to develop new variants of LPP for dimensionality
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