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Computing risk-based misclassification error density distribution for ensembles is an important yet
difficult task. Bayesian methods provide one way to estimate these density distributions. In this paper,
Bayesian modeling approach is used to compute posterior misclassification error density distributions for
both binary and non-binary classifiers. Real-world datasets and holdout samples are used to illustrate
computation of posterior misclassification error distributions. These posterior error distributions are very
useful to compare ensembles, and provide risk-based misclassification cost estimates.
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1. Introduction

There is a recent surge in interest in applying risk management
approaches for management science (Wu, 2016) and data mining
area (Wu and Birge, 2016). A range of applications have appeared
from enterprise risk management (Wu et al, 2015), cost ac-
counting (Wu et al., 2014), dynamic pricing (Wu and Wu, 2016),
merger evaluation (Wu et al., 2014) and data mining (Wu et al,,
2014).

Classification problem is one of the most studied problem in
data mining. It is well known that classification methods are often
unstable and sensitive to noise (Du et al., 2015) in training datasets
(Bhattacharyya and Pendharkar, 1998), and they need to in-
corporate risk management techniques. One way to manage risk in
these methods is to improve stability of these methods by com-
bining multiple predictions of multiple classifiers into a single
prediction (Breiman, 1996). Such techniques are known as en-
sembles in data mining literature (Tan et al., 2006). The Bias-
Variance framework provides a formal theory in analyzing the
behavior of ensembles (Tan et al.,, 2006). The bias component in
the Bias-Variance framework deals with the assumption related to
a classifier about the nature of its classification function decision
boundary. The variance component deals with the differences in
composition of training dataset that may lead to different classi-
fication function decision boundaries. Averaging classifier deci-
sions results in lower error risk between the unknown true
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decision boundary and known ensemble decision boundary
(Mendes-Moreira et al., 2012).

There are different ways an ensemble can be created. Most
approaches vary two parameters: sampling with training ex-
amples and voting mechanism (i.e., weighting) of individual clas-
sifiers in an ensemble. A simple ensemble (called Bagging) simply
aggregates class forecast from its classifiers that are either training
on one single training dataset or using repeated samples from a
common training dataset (bootstrap sampling). For small datasets,
bootstrap sampling is often necessary for better generalization
(Witten et al., 2011). Other approaches such as Boosting approach
deals with weighting schemes for bootstrap sampling that assign
higher probability to aid higher selection of examples that are
difficult to classify. Bayesian modeling approaches assign higher
weights to a classifier that has higher predictive performance
(Lindstrom et al., 2015).

While the Bias-Variance framework recognizes ensemble er-
rors, no study in literature appears to have focused on learning
probability density distributions of such errors. Availability of such
probability density distributions will allow decision-makers to
select, design and compare different ensemble methods to de-
termine the suitability of different methods for a problem at hand.
Since data and problem domain play such an important part of
ensemble performance, the error densities must be conditioned on
examples from the problem domain. The Bayesian data analysis
framework provides excellent tools for learning such posterior
error distributions (Zaidan et al., 2015).

In this research, a Bayesian framework for estimating posterior
classification error and correct classification distributions is pro-
posed. While a reader may note that classification approaches
require tweaking of several parameters to improve their
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performance, and ensemble techniques require consideration of
several design and training data sampling issues, minimal treat-
ment to such issues is provided in this research to keep focus only
on learning and application of Bayesian posterior distribution
methods. A simple Bagging ensemble is considered where classi-
fication techniques are trained on one common dataset and each
classification technique has equal weight (voting right) for final
prediction. Some experimentation on parameters related to clas-
sification techniques is performed before settling on the final set of
parameters. The primary focus of this research is learning pos-
terior distributions given that the votes of individual classifiers
from an ensemble are available. Sample code from simulations (in
Appendix A) used in this study is provided to aid other researchers
in using the proposed Bayesian data analysis methods. The rest of
the paper is organized as follows: In Section 2 the Bayesian model
for learning posterior error and correct classification posterior
distributions is proposed. In Section 3, different classification
techniques used in Bagging ensemble are described. In Section 4,
description of data used in this study is provided, which is fol-
lowed by experiments and results. In Section 5, the paper con-
cludes with a summary and directions for future research.

2. The Bayesian model for posterior distributions in ensembles

To introduce Bayesian models for ensembles, a binary classifi-
cation problem is considered. The extension of current description
to multiclass problems is straight forward. Assume a test dataset
containing n>1 examples and k> 1 classifiers in an ensemble.
The primary objective in this section is to learn posterior dis-
tribution probabilities for the ensemble. Let these probabilities be
represented by a vector p=[¢p"!, p'2, ¢!, p**]", where @' is
defined as the probability that an ensemble will classify an ex-
ample in class 1 when it actually belongs to class 1, and ¢'? is the
probability that an ensemble will classify an example in class
1 when it actually belongs to class 2. The remaining components
are defined similarly. Also, the probabilities are normalized and
sum of all components adds exactly to 1. A traditional data mining
setup is considered, where the actual class assignments for both
training and test datasets are known.

Bayesian models require additional consideration of example
independence, where individual examples in test dataset are in-
dependent of each other, and define a similar probability vector
o =6 0% 67", 0,-22]T, which represents ensemble classification
probabilities for the ith (i=1.,n) example. Additionally, a vote
vector y = [yi], yf]Tis considered, where ' is an integer re-
presenting number of classifiers in k ensemble predicting the test
example i belonging to class 1 and yl.2 is an integer representing
the number of classifiers predicting the test example i belonging to
class 2. Thus, for k-classifier ensemble yl.l + yi2=k. The vector y; is
the ensemble test data set prediction for example i and represents
available data upon which posterior distributions for @ ; are con-
ditioned. The collection of all such predictions for entire dataset is
a class-by-test examples matrix Y=[yy, ..., yn]. Focusing on the
components of @ ; these posterior distributions may be represents
as: p (61M1y1), p (6121 y;), p (621 y1), and p (621 y;). Assuming that the
components of & ; are independent and identically distributed, a
relationship between components of vector 6; and vector ¢ can be
established. This relationship between posterior distributions for
components ¢! and 6! may be established using following ex-
pression:

p(go“ [ Y) = ﬁp(é)i“lyi).
i1

2.1)

&) &

y1 y2 yn

Fig. 1. Structure for traditional Bayesian Model.

Using the Bayesian theorem, the right hand side component
may be written as follows:

p( oM y,.) x p(yi I 9,-”) x p(e,-”). 2.2)

The posterior distributions for other components can be simi-
larly defined and in a vector form as follows:

p(61y) o p(¥16) x p(6). 2.3)

The structure of traditional Bayesian model implementing right
hand side of Eq. (2.3) is shown in Fig. 1. When classification pro-
blem is binary, conjugate Binomial likelihood and Beta prior are
used in this research. Mathematically, the likelihood and prior
distribution for binary classification problems are represented as
follows:

y;~Binomial(6;, k),and 2.4)

0~Beta(u, v) 2.5)

Posterior distributions for p(¢lY) are computed using Bayesian
Markov Chain Monte Carlo (MCMC) simulations using the Win-
bugs software. Low information prior with values of u=1 and v=1
are used in the simulations. For classification problems with more
than two classes, following likelihood and prior are used:

Y;~Multinomial(6;, k), and (2.6)

0~Dirichlet(e). 2.7

In Eq. (2.7), e is a vector of ones with its dimension equal to
number of classes (or groups say g=>2) in the classification
problem.

3. Classification techniques used in ensembles

For describing the classification algorithms used in this re-
search, a classification problem is assumed to be consisting of N
training examples, where each example is denoted by a tuple (x;,
z) (i=1,...,N). The vector x;=[xi1,...,X;q]" corresponds to decision-
making attribute set for the ith example, and the variable z; is an
integer denoting its class label. The individual techniques used in
this research are described in following sub-sections.

3.1. Support vector machines
Support vector machines (SVM) were introduced by Vapnik

(1995), and assume that the class labels for a binary classification
problem are given by ze{-11}. The SVM learns linear
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