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a b s t r a c t

Ordered weighted aggregation procedures have been introduced in many applications with promising results.
In this paper, an innovative approach for ordered weighted aggregation of fuzzy relations is proposed. It
allows the integration of component relations generated from different perspectives of a certain observation
to form an overall fuzzy relation, deriving a useful similarity measure for observed data points. Two types of
aggregation are investigated: (a) min/max operators are employed for the aggregation of component relations
defined by the minimum T-norm; and (b) sum/product operators are employed for the aggregation of component
relations defined by the Łukasiewicz 𝑇 -norm. The resultant ordered weighted aggregations prove to preserve the
desirable reflexivity and symmetry properties, with 𝑇 -transitivity also conditionally preserved if appropriate
weighting vectors are adopted. The conditions upon which the proposed aggregated relations preserve 𝑇 -
transitivity are studied. The characteristics of applying an aggregated relation in combination with clustering
procedures is also experimentally examined, where fuzzy similarity relations regarding individual features
are aggregated to support hierarchical clustering. An application to the detection of water treatment plant
malfunction demonstrates that better results can be obtained with the transitive fuzzy relations acting as the
required similarity measures, as compared to the use of non-transitive ones. By introducing transitivity to the
aggregation the interpretability of the detection system is also enriched.

© 2017 Published by Elsevier Ltd.

1. Introduction

Methods for aggregation of different pieces of information into an
integrated form are an indispensable tool, not only for theoretical
development in e.g., mathematics and physics, but for many real-world
applications in engineering, economical, social, and other fields. Having
recognised this, a significant number of aggregation operators have been
developed, ranging from simple arithmetic mean to more complicated
fuzzy methods, including minimum/maximum, uninorm, and other
alternative 𝑇 -norms/𝑇 -conorms (Calvo et al., 2012; Beliakov et al.,
2008; Calvo et al., 2002). In particular, a class of parameterised mean-
like aggregation operators, commonly named as ordered weighted aver-
aging (OWA), have been introduced in the literature (Yager, 1988) and
successfully applied in different areas (Chen and Zhou, 2011; Merigó
and Casanovas, 2011; Suo et al., 2012; Su et al., 2016). Intuitively, with
an appropriate specification of a weighting vector, an OWA operator
helps to capture and reflect the uncertain nature of human judgements
in problem-solving, generating an aggregated result that lies between
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the (conventional) two extremes of minimum or maximum combination
of multi-featured data objects (Yager, 2010).

In general, relations holding amongst data points form the basis for
many developments and applications of fuzzy systems. However, in their
applications to supporting multicriteria decision making (Li et al., 2015;
Williams and Steele, 2002), which forms a major challenge for practical
fuzzy systems, a key question is what underlying properties of the data
can be preserved in the process of constructing or aggregating similarity
relations. For certain applications like prototype-based reasoning where
clusters of objects that are similar to certain prototypical samples are
sought (Perner, 2002), properties such as reflexivity and transitivity
(Tolias et al., 2001) may not be necessary. Yet, there are many other
situations in which it is desirable to maintain the symmetry and a degree
of transitivity over the homogeneous similarity classes or granules
whose members possess these properties as symmetric and transitive
classes or granules support intuitive interpretation of the reasoning
process involved (Fernández Salido and Murakami, 2003; Lifen, 2008;
Wittkop et al., 2010).
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To enhance the mechanism for aggregation of fuzzy relations with
such desired properties entailed, this paper presents two novel types of
OWA-based aggregation methods, where the component relations are
sorted first and subsequently aggregated with assigned weights. These
techniques allow the aggregated results to retain the 𝑇min-transitive and
𝑇Ł-transitive similarities, respectively. It is theoretically proven that the
aggregated relations can hold the respective 𝑇 -transitivity if the weights
are arranged in ascending order. To illustrate the effectiveness of such
ordered weighted aggregation of fuzzy relations, it is systematically
evaluated over the task of clustering both synthetical and UCI datasets,
by following the strategy of hierarchical clustering. In this experimental
evaluation, similarities between data patterns are measured through
ordered weighted aggregation of component fuzzy relations which hold
amongst individual features. The work is applied to the detection of
water treatment plant malfunction, demonstrating that the aggregated
𝑇Ł-transitive similarities lead to better hierarchical clusters than those
of non-transitive similarities.

The paper is organised as follows. Section 2 introduces the basic
concepts of the aggregation of fuzzy relations. Section 3 presents two
types of ordered weighted aggregation of fuzzy relations, with a detailed
discussion of their properties, including the use of stress functions to
decide on the weighting vectors for them. Section 4 describes the exper-
imental investigation into the proposed aggregation of fuzzy relations in
performing clustering tasks, evaluated over a number of classic datasets.
Section 5 presents an application of the proposed aggregator to detecting
malfunctions of a water treatment plant. The paper is concluded in
Section 6, with a discussion of further research.

2. Preliminaries

2.1. Fuzzy relations

The concept of similarity is a preliminary notion in human cognition,
playing an essential role in many tasks such as taxonomy, recognition,
and inference (e.g., case-based reasoning). Particularly, fuzzy sets and
relations (Zadeh, 1971) are of great significance in both theoretical de-
velopment and industrial applications of constructing similarity metrics
when dealing with imprecise situations (Savino and Sekhari, 2009; Su
et al., 2013; Savino et al., 2017).

Definition 1. Let 𝑋 be a nonempty universe. A fuzzy relation 𝑅 =
[𝑟(𝑎, 𝑏)] ∶ 𝑋 ×𝑋 → [0, 1] is

∙ reflexive iff ∀𝑎 ∈ 𝑋, 𝑟(𝑎, 𝑎) = 1;
∙ symmetric iff ∀𝑎, 𝑏 ∈ 𝑋, 𝑟(𝑎, 𝑏) = 𝑟(𝑏, 𝑎);
∙ 𝑇 -transitive iff ∀𝑎, 𝑏, 𝑐 ∈ 𝑋, 𝑟(𝑎, 𝑏) ≥ 𝑇 (𝑟(𝑎, 𝑐), 𝑟(𝑐, 𝑏)),

where 𝑇 is a 𝑇 -norm (Schweizer and Sklar, 2011), e.g., a mapping
𝑇 (𝑥, 𝑦) ∶ [0, 1] × [0, 1] → [0, 1] which satisfies

(1) commutativity: 𝑇 (𝑥, 𝑦) = 𝑇 (𝑦, 𝑥);
(2) monotonicity: 𝑇 (𝑥, 𝑦) ≤ 𝑇 (𝑥′, 𝑦′), if 𝑥 ≤ 𝑥′ and 𝑦 ≤ 𝑦′;
(3) associativity: 𝑇 (𝑥, 𝑇 (𝑦, 𝑧)) = 𝑇 (𝑇 (𝑥, 𝑦), 𝑧); and
(4) boundary condition: 𝑇 (𝑥, 1) = 𝑥.

A number of 𝑇 -norms have been proposed in the literature, including
(but not limited to):

∙ the minimum 𝑇 -norm: 𝑇min(𝑥, 𝑦) = min(𝑥, 𝑦),
∙ the product 𝑇 -norm: 𝑇p(𝑥, 𝑦) = 𝑥 ⋅ 𝑦, and
∙ the Łukasiewicz’s 𝑇 -norm: 𝑇Ł(𝑥, 𝑦) = max(𝑥 + 𝑦 − 1, 0).
There exist many different definitions of similarity metrics which

have been employed with success for different purpose such as clus-
tering, classification, recognition and diagnostics. However, it is very
challenging to validate the effectiveness of a similarity metric in real
application scenarios. In this paper, the proposed aggregation methods
focus on the use of transitive similarity metrics in support of water
treatment plant monitoring.

2.2. Aggregation of fuzzy relations

In describing many engineering problems, an entity is commonly
represented by a set of features or evaluated by a set of characteristic
indicators (Savino and Apolloni, 2007). As such, the evaluation of sim-
ilarity between two entities is usually based on their feature/indicator-
values. When multiple indicators are considered, an aggregator is
typically employed to combine multiple similarity values into a single
one. For example, the similarity degrees derived from individual water
quality indicators can be aggregated using a weighted sum in an effort to
construct an overall water quality index for rivers (Liou et al., 2003). In
the following, relevant concepts and properties regarding aggregation
of fuzzy relations are introduced.

Formally, let 𝑋 denote a finite set, 𝑅𝑗 = [𝑟𝑗 (𝑎, 𝑏)] ∶ 𝑋 × 𝑋 →

[0, 1], 𝑎, 𝑏 ∈ 𝑋, 𝑗 = 1,… , 𝑚 denote 𝑚 fuzzy relations (named as
component relations) on 𝑋, and 𝑤1,… , 𝑤𝑚 ∈ [0, 1] denote weights,
respectively associated with these relations. The aggregation process
aims at providing a relation 𝑅 = [𝑟(𝑎, 𝑏)], 𝑎, 𝑏 ∈ 𝑋, summarising the
component relations 𝑅1,… , 𝑅𝑚 in conjunction with the information
implied by the weights 𝑤1,… , 𝑤𝑚. Here, the aggregated degree 𝑟(𝑎, 𝑏) ∈
[0, 1] at position (𝑎, 𝑏), 𝑎, 𝑏 ∈ 𝑋 depends on the local compositions
𝑟1(𝑎, 𝑏),… , 𝑟𝑚(𝑎, 𝑏). The component relations usually represent the sim-
ilarities of patterns from different perspectives such as opinions from
different experts, multiple criteria of evaluation and different features
of describing data.

Definition 2 (Fonck et al., 1998). The aggregation of component
relations 𝑅1 = [𝑟1(𝑎, 𝑏)],… , 𝑅𝑚 = [𝑟𝑚(𝑎, 𝑏)], 𝑎, 𝑏 ∈ 𝑋, with weights
𝑤1,… , 𝑤𝑚, is a relation 𝑅 over 𝑋 such that

𝑟(𝑎, 𝑏) = Agg(𝑟1(𝑎, 𝑏),… , 𝑟𝑚(𝑎, 𝑏), 𝑤1,… , 𝑤𝑚) (1)

where 𝑎, 𝑏 ∈ 𝑋 and Agg is a mapping [0, 1]2𝑚 → [0, 1], non-decreasing in
the first 𝑚 places and satisfying:

Agg(0,… , 0, 𝑤1,… , 𝑤𝑚) = 0, and Agg(1,… , 1, 𝑤1,… , 𝑤𝑚) = 1

Both the weighted and non-weighted aggregation procedures have
been studied in the literature. For the purpose of aggregating fuzzy
relations, typical methods investigated include the norm-conorm and
sum–product operators. Usually, the 𝑇 -norm/conorm operators are
employed to aggregate a more general type of fuzzy relations while
the sum–product operators are employed to aggregate fuzzy relations
which preserve 𝑇Ł transitivity (Fonck et al., 1998; Sudkamp, 1993). An
aggregator may be described as optimistic or pessimistic: An optimistic
aggregator produces outputs that are closer to the maximum of its
inputs, and the outputs of a pessimistic one are closer to the minimum
of its inputs.

Definition 3 (Fonck et al., 1998). Given component fuzzy relations
𝑅𝑗 = [𝑟𝑗 (𝑎, 𝑏)], 𝑗 = 1,… , 𝑚, the optimistic aggregated fuzzy relation over
these relations is

𝑅𝑜𝑝𝑡 = [𝑟𝑜𝑝𝑡(𝑎, 𝑏)] ∶ 𝑟opt(𝑎, 𝑏) = 𝑆𝑗=1,…,𝑚𝑇 (𝑤𝑗 , 𝑟𝑗 (𝑎, 𝑏)); (2)

and the pessimistic aggregated fuzzy relation over these relations is

𝑅𝑝𝑒𝑠𝑠 = [𝑟𝑝𝑒𝑠𝑠(𝑎, 𝑏)] ∶ 𝑟pess(𝑎, 𝑏) = 𝑇𝑗=1,…,𝑚𝑆(𝑁(𝑤𝑗 ), 𝑟𝑗 (𝑎, 𝑏)); (3)

where, 𝑇 is a 𝑇 -norm, 𝑆 is a 𝑇 -conorm and 𝑁 is a strong negation.

Intuitively, the weight 𝑤𝑗 here reflects the relative importance of 𝑅𝑗 .
These two aggregators may be explained with the specific case where
all the 𝑚 weights are assumed to be either 0 or 1 (representing negligible
or significant, respectively). In this case, Eq. (2) and Eq. (3) can be
rewritten as 𝑅opt = 𝑆{𝑗|𝑤𝑗=1}𝑅𝑗 and 𝑅pess = 𝑇{𝑗|𝑤𝑗=1}𝑅𝑗 , respectively.
Thus, 𝑟opt(𝑎, 𝑏) can be viewed as the degree of truth of the statement
that ‘‘there exists at least one significant criterion for which 𝑎 hold the
relation with 𝑏’’, and 𝑟pess(𝑎, 𝑏) as the degree of truth of the statement
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