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a b s t r a c t

Canonical correlation analysis (CCA) is a powerful statistical tool quantifying correlations between two sets of
multidimensional variables. CCA cannot detect nonlinear relationship, and it is costly to derive canonical variates
for high-dimensional data. Kernel CCA, a nonlinear extension of the CCA method, can efficiently exploit nonlinear
relations and reduce high dimensionality. However, kernel CCA yields the so called over-fitting phenomenon in
the high-dimensional feature space. To handle the shortcomings of kernel CCA, this paper develops a novel robust
kernel CCA algorithm (KCCA-ROB). The derived method begins with reformulating the traditional generalized
eigenvalue–eigenvector problem into a new framework. Under this novel framework, we develop a stable and
fast algorithm by means of singular value decomposition (SVD) method. Experimental results on both a simulated
dataset and real-world datasets demonstrate the effectiveness of the developed method.
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1. Introduction

With the rapid development of science and technology, we are
confronted with the challenging problem of finding relationship from a
large amount of data. It has been a long history for analyzing this ubiq-
uitous relationship. Canonical correlation analysis (CCA) (Hotelling,
1936), as such a paradigm, is a powerful statistical tool for detecting
the latent mutual information between two sets of multidimensional
variates. The two sets of multidimensional variables can be regarded as
two distinct objects or two views of the same object. CCA aims at finding
a pair of linear transformations, such that the transformed variables
in the lower dimensional space are maximally correlated. Hence it has
been widely used in a variety of distinct fields: cross-language document
retrieval (Vinokourov et al., 2002), genomic data analysis (Yamanishi
et al., 2003), functional magnetic resonance imaging (Hardoon et al.,
2004a), multi-view learning (Farquhar et al., 2005; Kakade and Foster,
2007; Sun, 2013) etc. Kettenring (1971) extended CCA to the setting of
more than two sets. Generalized CCA was proposed by Tenenhaus and
Tenenhaus (2014) for studying multiblock data analysis. Furthermore,
tensor CCA was introduced (Luo et al., 2015) to handle the data with
arbitrary number of views. Sparse CCA algorithms were investigated
by Chu et al. (2013a), Waaijenborg et al. (2008), Witten et al. (2009).
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Nonetheless, the major drawback of CCA is that it cannot capture
nonlinear relations among variables. Especially for the data that are not
in the forms of vectors, for instance, in images, microarray data and so
on. Therefore deep CCA (Andrew et al., 2013) was introduced to tackle
this issue by employing the idea of deep learning method. However,
how many layers should be selected is still an open problem. Another
commonly used technique for the nonlinear extension of CCA is the
kernel trick, resulting in kernel CCA. The main idea of kernel CCA is
to map the variables into a higher-dimensional feature space, and then
apply CCA in the RKHSs (reproducing kernel Hilbert spaces, see Cucker
and Zhou (2007); De Vito et al. (2004); Zhou (2003) and the references
therein). Kernel CCA can achieve dimension reduction results and detect
nonlinear relationships. Hence, it has been extensively used in biology
and neurology (Hardoon et al., 2004a; Vert and Kanehisa, 2002),
content-based image retrieval (Hardoon et al., 2004b), natural language
processing (Vinokourov et al., 2002). In the theoretical analysis of kernel
CCA, convergence analysis was studied by Hardoon and Shawe-Taylor
(2009) via Rademacher complexity. Fukumizu et al. (2007) conducted
statistical consistency of kernel CCA from the cross-covariance operator
viewpoint. Cai and Sun (2011) investigated it under the AC condition,
which is an assumption about the relationship between the eigenvalues
of cross-covariance operator and covariance operators.
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One crucial problem of the kernel CCA is the so called over-fitting
phenomenon. One way is to use the regularization technique to handle
it, and cross validation (CV) method was used to select the optimal
regularization parameter. However, it is time-consuming to utilize CV
to select the tuning parameter and the parameter selected by CV does
not necessarily lead to the best performance for the test dataset. How
to select appropriate kernels is another problem. Zhu et al. (2012)
proposed a mixed kernel CCA, which combines polynomial kernel and
Gaussian kernel for the purpose of dimension reduction. Hardoon et al.
(2004b) utilized a partial Gram–Schmidt orthogonalization to solve the
kernel CCA issue. We still need to choose the optimal regularization
parameter, however. Motivated by the idea of Xing et al. (2016) for the
CCA problem, this paper will focus on the stability analysis of kernel
CCA, and develop a novel robust kernel CCA algorithm for information
retrieval related tasks. Numerical experiments on both simulated dataset
and real-world datasets, including content-based image retrieval and
cross-language document retrieval, demonstrate the effectiveness and
the feasibility of the algorithm. The rest of the paper is organized as
follows. We review the CCA and the kernel CCA in Section 2. Section 3
is dedicated to the depiction of the new algorithm. Section 4 gives the
experimental results. We conclude this paper and discuss future works
in Section 5.

2. Background

In this section, we will give a brief review of CCA and kernel CCA.
Let 𝑥 ∈ R𝑛1 and 𝑦 ∈ R𝑛2 be two random variables. Given 𝑚 observations
{𝑥𝑖, 𝑦𝑖}𝑚𝑖=1. Denote 𝑋 = (𝑥1,… , 𝑥𝑚) ∈ R𝑛1×𝑚, 𝑌 = (𝑦1,… , 𝑦𝑚) ∈ R𝑛2×𝑚.
One usually assumes that 𝑋 and 𝑌 are centralized (∑𝑚

𝑖=1𝑥𝑖 = 0,
∑𝑚

𝑖=1𝑦𝑖 =
0) without loss of generality (w.l.o.g.). Then CCA solves

max
𝑤𝑥 ,𝑤𝑦

𝑤𝑇
𝑥𝑋𝑌 𝑇𝑤𝑦

𝑠.𝑡. 𝑤𝑇
𝑥𝑋𝑋𝑇𝑤𝑥 = 1,

𝑤𝑇
𝑦 𝑌 𝑌

𝑇𝑤𝑦 = 1.

When 𝑛1 or 𝑛2 is very large, it is time-consuming to find canonical
variates 𝑤𝑥 and 𝑤𝑦. Obviously, CCA cannot detect nonlinear relations.
To handle this issue, kernel CCA was introduced. It starts to construct
feature mappings 𝜙𝑥 and 𝜙𝑦 such that 𝑋 and 𝑌 can be converted into

𝛷𝑥 = (𝜙𝑥(𝑥1),… , 𝜙𝑥(𝑥𝑚)) ∈ R1×𝑚, 𝛷𝑦 = (𝜙𝑦(𝑦1),… , 𝜙𝑦(𝑦𝑚)) ∈ R2×𝑚,

where 1 (resp. 2) is the dimension of reproducing kernel Hilbert
space (RKHS)  (resp.  ), maybe infinite dimension. Applying the
so-called kernel trick, we can introduce 𝑘 (𝑥1, 𝑥2) such that 𝑘 (𝑥1, 𝑥2) =
⟨𝜙𝑥(𝑥1), 𝜙𝑥(𝑥2)⟩

(𝑘 (𝑦1, 𝑦2) = ⟨𝜙𝑦(𝑦1), 𝜙𝑦(𝑦2)⟩
), where ⟨, ⟩ is the

inner product in respective hypothesis space. Denote the Gram matrices
𝐾𝑥 = ⟨𝛷𝑥, 𝛷𝑥⟩ = (𝑘 (𝑥𝑖, 𝑥𝑗 ))𝑚𝑖,𝑗=1, 𝐾𝑦 = ⟨𝛷𝑦, 𝛷𝑦⟩ = (𝑘 (𝑦𝑖, 𝑦𝑗 ))𝑚𝑖,𝑗=1. As-
sume that 𝐾𝑥 and 𝐾𝑦 are centralized w.l.o.g. unless otherwise specified.
For more details about data centering in RKHS, see Schölkopf and Smola
(2002). Kernel CCA seeks linear transformations in the RKHS by taking
𝑤𝑥 = 𝛷𝑥𝛼 =

∑𝑚
𝑖=1𝛼𝑖𝜙𝑥(𝑥𝑖), 𝑤𝑦 = 𝛷𝑦𝛽 =

∑𝑚
𝑖=1𝛽𝑖𝜙𝑦(𝑦𝑖). Therefore, kernel

CCA takes the form

max
𝛼,𝛽

𝛼𝑇𝐾𝑥𝐾𝑦𝛽

𝑠.𝑡. 𝛼𝑇𝐾2
𝑥𝛼 = 1,

𝛽𝑇𝐾2
𝑦𝛽 = 1, (1)

where 𝛼 = (𝛼1,… , 𝛼𝑚)𝑇 , 𝛽 = (𝛽1,… , 𝛽𝑚)𝑇 . The expression (1) implies that
kernel CCA can be viewed as the dual of the original CCA problem. One
can see that kernel CCA can reduce dimensionality efficiently. Similar
to the forms of multiple CCA (Chu et al., 2013a; Hardoon et al., 2004b),
multiple kernel CCA can be defined as the following (see Chu et al.
(2013b))

max
𝑊𝑥 ,𝑊𝑦

Trace(𝑊 𝑇
𝑥 𝐾𝑥𝐾𝑦𝑊𝑦)

𝑠.𝑡. 𝑊 𝑇
𝑥 𝐾2

𝑥𝑊𝑥 = 𝐼, 𝑊𝑥 ∈ R𝑚×𝑑 ,

𝑊 𝑇
𝑦 𝐾2

𝑦𝑊𝑦 = 𝐼, 𝑊𝑦 ∈ R𝑚×𝑑 , (2)

where 𝑊𝑥 = (𝛼1,… , 𝛼𝑑 ),𝑊𝑦 = (𝛽1,… , 𝛽𝑑 ) consist of dual vectors for 𝑋
and 𝑌 , respectively.

Obviously, problem (1) can be solved by means of Lagrangian
method. Define

𝐿(𝜆1, 𝜆2, 𝛼, 𝛽) = 𝛼𝑇𝐾𝑥𝐾𝑦𝛽 −
𝜆1
2
(𝛼𝑇𝐾2

𝑥𝛼 − 1) −
𝜆2
2
(𝛽𝑇𝐾2

𝑦𝛽 − 1),

Taking derivatives with respect to 𝛼 and 𝛽, we can see that

𝜕𝐿
𝜕𝛼

= 𝐾𝑥𝐾𝑦𝛽 − 𝜆1𝐾
2
𝑥𝛼 = 0, (3)

𝜕𝐿
𝜕𝛽

= 𝐾𝑦𝐾𝑥𝛼 − 𝜆2𝐾
2
𝑦𝛽 = 0, (4)

Subtracting 𝛽𝑇 (the transpose of 𝛽) times Eq. (4) from 𝛼𝑇 times Eq. (3)
yields that

𝜆2 = 𝜆2𝛽
𝑇𝐾2

𝑦𝛽 = 𝜆1𝛼
𝑇𝐾2

𝑥𝛼 = 𝜆1, (5)

which implies that 𝜆1 = 𝜆2. If 𝐾𝑥 and 𝐾𝑦 are invertible, then Eq. (4)

leads to 𝛽 =
𝐾−1
𝑦 𝐾𝑥𝛼
𝜆1

. Substitute this into Eq. (3), one can see that
𝜆21𝛼 = 𝐼𝛼, which means 𝜆1 = 1. Thus 𝜆1 = 1 for every vector 𝛼. This
means we can get perfect correlation for any 𝛼 and 𝛽 without reference to
any specific 𝛼, and over-fitting phenomenon arises in high-dimensional
feature space. Hence a natural question is how to exploit nonlinear
relations and circumvent the potential over-fitting problem.

In the next section, we will solve this problem from another view-
point, which is inspired from the idea of Xing et al. (2016).

3. Robust kernel CCA algorithm and main results

3.1. Reformulation of kernel CCA

Recall that 𝐾𝑥𝐾𝑦𝛽 = 𝜆1𝐾2
𝑥𝛼, 𝐾𝑦𝐾𝑥𝛼 = 𝜆2𝐾2

𝑦𝛽. Simple calculations
lead to

−𝐾𝑥𝐾𝑦𝛽 +𝐾2
𝑥𝛼 = 𝜇𝐾2

𝑥𝛼,

and

−𝐾𝑦𝐾𝑥𝛼 +𝐾2
𝑦𝛽 = 𝜇𝐾2

𝑦𝛽,

where 𝜇 = 1 − 𝜆1 = 1 − 𝜆2. Denote

𝜉 =
(

𝛼
𝛽

)

, 𝐾 =
(

𝐾𝑥 0
0 𝐾𝑦

)

, 𝐿 =
(

𝐼 −𝐼
−𝐼 𝐼

)

.

Therefore, kernel CCA problem can be formulated as a compact gener-
alized eigenvalue problem:

𝐾𝐿𝐾𝜉 = 𝜇𝐾2𝜉.

Let the reduced SVD (singular value decomposition) of 𝑀 = 𝐾𝐿𝐾+𝐾2 ∈
R2𝑚×2𝑚 be

𝑀 = (𝑈1 𝑈2)
(

𝛴1 0
0 0

)

(𝑈𝑇
1 𝑈𝑇

2 )

= 𝑈1𝛴1𝑈
𝑇
1 , (6)

where 𝑈1 ∈ R2𝑚×𝑟, 𝑈2 ∈ R2𝑚×(2𝑚−𝑟), 𝛴1 ∈ R𝑟×𝑟. We first have the
following properties of kernel CCA problems.

Lemma 1. For the matrix 𝐾, we have 𝐾𝑈2 = 0, and finding the optimal
projection vector 𝜉 can be converted into that of 𝑈1𝜂 for some 𝜂 ≠ 0.

Proof. Recall that 𝑀 = 𝑈1𝛴1𝑈𝑇
1 , then 𝑈𝑇

2 (𝐾𝐿𝐾 + 𝐾2)𝑈2 =
𝑈𝑇
2 𝑈1𝛴1𝑈𝑇

1 𝑈2 = 0. On the other hand,

𝐾𝐿𝐾 +𝐾2 = 𝐾 ⋅

√

2
2

𝐿

(

𝐾 ⋅

√

2
2

𝐿

)𝑇

+𝐾2,

which means 𝐾𝐿𝐾 and 𝐾2 are both positive semi-definite matrices. Let
𝜃𝑖 (𝑖 = 1,… , 𝑟) be the i-th column of the matrix 𝑈2. Therefore,

𝑈𝑇
2 (𝐾𝐿𝐾 +𝐾2)𝑈2 = 𝑈𝑇

2 𝑈1𝛴1𝑈
𝑇
1 𝑈2 = 0
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