
Engineering Applications of Artificial Intelligence 64 (2017) 197–207

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

An improved Monte Carlo method based on Gaussian growth to calculate
the workspace of robots
Adrián Peidró *, Óscar Reinoso, Arturo Gil, José María Marín, Luis Payá
Systems Engineering and Automation Department, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain

a r t i c l e i n f o

Keywords:
Gaussian distribution
Monte Carlo method
Robot manipulator
Workspace

a b s t r a c t

This paper presents a new Monte Carlo method to calculate the workspace of robot manipulators, which we
called the Gaussian Growth method. In contrast to classical brute-force Monte Carlo methods, which rely on
increasing the number of randomly generated points in the whole workspace to attain higher accuracy, the
Gaussian Growth method focuses on populating and improving the precision of poorly defined regions of the
workspace. For this purpose, the proposed method first generates an inaccurate seed workspace using a classical
Monte Carlo method, and then it uses the Gaussian distribution to densify and grow this seed workspace until
the boundaries of the workspace are attained. The proposed method is compared with previous Monte Carlo
methods using a 10-degrees-of-freedom robot as a case study, and it is demonstrated that the Gaussian Growth
method can generate more accurate workspaces than previous methods requiring the same or less computation
time.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The workspace of a robot manipulator can be defined as a set of posi-
tions and/or orientations that can be attained by its end-effector, which
is the body of the robot that usually interacts with the environment.
Studying the workspace is very important for designing the robot and for
planning its movements. Therefore, the calculation of the workspace has
been the focus of many research studies during the last three decades.
Most methods for calculating the workspace can be classified into one of
three main classes (Merlet, 2006): geometrical methods, methods based
on the Jacobian matrix, and discretization methods.

Geometrical methods are mainly used for parallel robots, in which
the motion of the end-effector is controlled by two or more legs working
in parallel. These methods consist in calculating first the individual
workspaces of the different legs independently, whose workspaces are
relatively simple geometrical objects such as annuli (Merlet et al.,
1998), spherical shells (Gosselin, 1990), or solid tori (Liu and Wang,
2014). Then, the workspace of the complete robot is obtained as the
intersection of the individual workspaces of all legs, using Computer
Aided Design tools. Geometrical methods are very accurate and fast,
but they are tailored to each specific robot, which limits their scope.
Moreover, it is difficult to impose some restrictions when applying these
methods, such as the existence of mechanical limits on the joints or the
avoidance of collisions between different parts of the robot, although

* Corresponding author.
E-mail addresses: apeidro@umh.es (A. Peidró), o.reinoso@umh.es (Ó Reinoso), arturo.gil@umh.es (A. Gil), jmarin@umh.es (J.M. Marı́n), lpaya@umh.es (L. Payá).

in some cases these restrictions can be included in this method (Merlet,
1995).

Jacobian-based methods, which are more general, focus on obtaining
directly the boundaries that delimit the workspace. These boundaries
can be obtained through imposing the rank deficiency of the Jacobian
matrix constituted by the derivatives of all the constraints of the robot
with respect to all the variables, excluding those variables that define
the position and orientation of the end-effector. When imposing the rank
deficiency of such a Jacobian matrix, one obtains a set of equations that
can be solved to obtain the boundaries of the workspace. In some cases,
it is possible to solve analytically these equations, obtaining analytical
descriptions of the workspace boundaries (Abdel-Malek and Yang, 2006;
Abdel-Malek et al., 2000). If this is not possible, they can be solved
using numerical methods (Haug et al., 1995; Bohigas et al., 2012). A
drawback of Jacobian-based methods is that all the constraints must
be written as equalities, which may result in quite large systems of
equations. Moreover, although some inequality constraints (like joint
limits) may be easily transformed into equalities, other constraints (like
avoidance of self-interferences) are difficult or impossible to model as
equalities.

On the contrary, discretization methods are very flexible and
can easily deal with all types of constraints, although they may be
computer- and memory-intensive. These methods consist in discretizing
the workspace or joint space into a regular grid of nodes, and solving

http://dx.doi.org/10.1016/j.engappai.2017.06.009
Received 11 February 2016; Received in revised form 19 May 2017; Accepted 12 June 2017
0952-1976/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.engappai.2017.06.009
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2017.06.009&domain=pdf
mailto:apeidro@umh.es
mailto:o.reinoso@umh.es
mailto:arturo.gil@umh.es
mailto:jmarin@umh.es
mailto:lpaya@umh.es
http://dx.doi.org/10.1016/j.engappai.2017.06.009


A. Peidró et al. Engineering Applications of Artificial Intelligence 64 (2017) 197–207

at each node the inverse or forward kinematic problem, respectively,
to obtain a complete configuration of the robot (Macho et al., 2009;
Bonev and Ryu, 2001; Pisla et al., 2013; Cervantes-Sánchez et al., 2000).
Then, it is checked if each configuration belongs to the workspace and
satisfies all the considered constraints (e.g. joint limits or avoidance of
self-interferences).

A variation of the previous discretization methods (in which the
joint space or workspace are discretized into regular grids) is the Monte
Carlo method, in which a large number of configurations of the robot
are randomly generated. The Monte Carlo method is a simple and
widely used method especially suitable for computing the workspace
of complex robots subject to complicated constraints, which have many
degrees of freedom or are even kinematically redundant, like humanoid
robots (Guan et al., 2008; Badescu and Mavroidis, 2004; Cao et al.,
2011; Rastegar and Perel, 1990; Alciatore and Ng, 1994; Burgner-Kahrs
et al., 2014; Wang et al., 2008). Despite being widely used, however,
classical or usual Monte Carlo methods usually generate inaccurate
workspaces that may be pretty different from the true workspaces. In
most cases, to increase the accuracy of the workspace, the number of
randomly generated configurations is simply increased. However, this
is an inefficient solution that may be far from solving the accuracy
problem.

To solve this accuracy problem, this paper proposes a new Monte
Carlo method, which we called Gaussian Growth (GG). The GG method
consists of generating first an inaccurate seed workspace using a
classical Monte Carlo method, and then growing this seed workspace
using the Gaussian (or normal) random distribution, until an accurate
approximation of the workspace is obtained. The proposed method is
more efficient than previous Monte Carlo methods, because it is able to
compute more accurate workspaces requiring the same or less time than
these methods.

The remainder of this paper is organized as follows. First, Section 2
reviews classical Monte Carlo methods and analyzes their accuracy
problems. Next, Section 3 presents in detail the new proposed GG
method. Section 4 describes a 10-degrees-of-freedom robot that will be
used as a case study to illustrate the proposed method. Then, the GG
method is compared with previous Monte Carlo methods in Section 5,
analyzing some examples. Finally, Section 6 presents the conclusions.

2. The accuracy problems of classical Monte Carlo methods

This section reviews classical Monte Carlo methods for calculating
the workspace of robot manipulators, and analyzes the accuracy prob-
lems of these methods. Let 𝐪 =

[

𝑞1,… , 𝑞𝑑
]𝑇 denote the vector of joint

coordinates of a robot with 𝑑 degrees of freedom (DOF). The Monte
Carlo method consists of generating a large number of random vectors
𝐪 and, for each of them, solving the forward kinematic problem to obtain
the position 𝐗 ∈ R3 of the end-effector of the robot. The components of
each random vector 𝐪 are randomly generated as follows:

𝑞𝑘 = 𝑞𝑚𝑖𝑛𝑘 + (𝑞𝑚𝑎𝑥𝑘 − 𝑞𝑚𝑖𝑛𝑘 )𝑟𝑘, 𝑘 = 1,… , 𝑑 (1)

where
{

𝑞𝑚𝑖𝑛𝑘 , 𝑞𝑚𝑎𝑥𝑘
}

are the joint limits of joint coordinate 𝑞𝑘 and 𝑟𝑘 is
a random variable in (0, 1). After generating each random position of
the robot, one should check if it satisfies other additional constraints
that may exist (for example, different parts of the robot should not
interfere, or the end-effector should have a desired orientation). If
all the constraints are satisfied, the generated point 𝐗 is stored as a
workspace point, and the set of all stored points constitutes a discrete
approximation of the workspace of the manipulator.

The workspace generated in this way is a point cloud in R3 that
can be represented graphically. However, for the practical use of the
workspace (e.g. for path planning), it is necessary to build a database
of the workspace using the generated random points (Guan et al.,
2008). To build the database, the Cartesian space is discretized with
desired resolution, obtaining a set of cells in this space. Then, all cells

which contain at least one workspace point are classified as ‘‘reach-
able’’, whereas the remaining cells are considered ‘‘unreachable’’ (see
Fig. 1(a)). The boundaries of the workspace can be approximated by the
set of reachable cells which have at least one neighboring unreachable
cell. In this paper, the neighbors that will be considered in 3D are the
26-neighbors, whereas in 2D the 8-neighbors will be considered (see
Fig. 1(b)).

Usually, the variable 𝑟𝑘 in Eq. (1) is a uniform random number in
(0, 1). However, as pointed out by Cao et al. (2011), this choice generally
yields inaccurate and nonuniform workspaces, in which some regions
are very dense and well-defined (regions populated by many workspace
points) whereas other regions, especially those near the boundaries
of the workspace, are too sparse (regions with comparatively much
fewer points) and make it difficult to figure out the true shape of the
workspace. For example, Fig. 2(a) shows the workspace of the robot
described in Section 4, composed of 9 ⋅ 106 random workspace points
obtained by sampling the joint coordinates from uniform distributions.
Note that the true workspace of the robot, shown in Fig. 2(b), is bigger
and has much better defined boundaries than the workspace obtained
by sampling from uniform distributions, which has noisy and irregular
boundaries.

The reason for this nonuniform density of the workspace is the non-
linearity of the forward kinematics transformation, which transforms
joint coordinates 𝐪 into position coordinates 𝐗 of the end-effector.
Although the joint coordinates are distributed uniformly, this uniformity
is not conserved by the nonlinearity of the transformation 𝐪 → 𝐗. As a
result, 𝐗 is distributed according to a nonuniform distribution, which
has high-probability regions (regions in which workspace points are
generated more often, like the internal regions indicated in Fig. 2(a))
and regions of low probability (sparse regions in which points are hardly
generated, like the workspace boundaries in Fig. 2(a)). It should be
noted that, although this nonuniform density may be undesirable for
obtaining accurate workspaces, it is useful as a measure of the degree
of redundancy of the robot across its workspace (Burgner-Kahrs et al.,
2014). Indeed, the denser a region of the workspace is, the higher the
redundancy is, because it means that the end-effector can be placed in
that region with a wider variety of configurations.

To correct this accuracy problem and increase the density of points
in sparse regions, one may try to increase the number of randomly
generated points, therefore increasing the computation time. However,
this is not an efficient solution since most points still fall in high-
probability regions (Cao et al., 2011). Alternatively, to solve this
problem and achieve more accuracy (especially near the workspace
boundaries), Cao et al. (2011) proposed using symmetric U-shaped beta
distributions to sample the joint coordinates, instead of using uniform
distributions. In that case, 𝑟𝑘 in Eq. (1) is a random variable with the
following probability density function:

𝑓 (𝑟𝑘, 𝛽𝑘) = 𝐾
[

𝑟𝑘
(

1 − 𝑟𝑘
)]𝛽𝑘−1 (2)

where 0 < 𝑟𝑘 < 1, 0 < 𝛽𝑘 ≤ 1 and 𝐾 is a normalization constant such
that ∫ 1

0 𝑓 (𝑟𝑘, 𝛽𝑘) d𝑟𝑘 = 1. This U-shaped distribution, shown in Fig. 3 for
different values of 𝛽𝑘, diverges to infinity at 𝑟𝑘 = 0 and 𝑟𝑘 = 1, and it is
symmetric with respect to 𝑟𝑘 = 0.5, where the minimum probability
occurs. Parameter 𝛽𝑘 determines the shape of the distribution: the
smaller 𝛽𝑘 is, the less probable the values around 𝑟𝑘 = 0.5 are, and the
more probable the values near the limits (𝑟𝑘 = 0 and 𝑟𝑘 = 1) are. As
𝛽𝑘 increases, the distribution adopts a more horizontal shape, and all
values of 𝑟𝑘 ∈ (0, 1) acquire a more similar probability. The uniform
distribution is a particular case of the beta distribution when 𝛽𝑘 tends
to 1 (see the case 𝛽𝑘 = 0.99 in Fig. 3).

As demonstrated in Cao et al. (2011), using the beta distribution
of Eq. (2) to randomly sample the joint coordinates may yield more
uniform workspaces, and with better defined boundaries, than using
uniform distributions (generating in both cases the same number of
random points). This is because, in many cases, the boundaries are
typically attained when some joint coordinates reach their joint limits.

198



Download English Version:

https://daneshyari.com/en/article/4942656

Download Persian Version:

https://daneshyari.com/article/4942656

Daneshyari.com

https://daneshyari.com/en/article/4942656
https://daneshyari.com/article/4942656
https://daneshyari.com

