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a b s t r a c t

Two types of uncertainty, namely, randomness and fuzziness, exist in preference modeling. Fuzziness is mainly
caused by human subjective judgment and incomplete knowledge, and randomness often originates from the
variability of influences on the inputs and outputs of a preference model. Various techniques have been utilized
to develop preference models. However, only few previous studies have addressed both fuzziness and randomness
in preference modeling. Among these limited studies, none have considered the randomness caused by particular
independent variables. To fill this research gap, this study proposes probabilistic fuzzy regression (PFR), a new
approach for preference modeling. PFR considers both the fuzziness of data sets and the randomness caused
by independent variables. In the proposed approach, probability density functions (PDFs) are adopted to model
randomness. The parameter settings of the PDFs are determined using a chaos optimization algorithm. The
probabilistic terms of the PFR models are generated according to the expected value functions of the random
variables. Fuzzy regression analysis is employed to determine the fuzzy coefficients for all the terms of the PFR
models. An industrial case study of a tea maker design is used to illustrate the applicability of PFR and evaluate its
effectiveness. Modeling results obtained from PFR are compared with those obtained from statistical regression,
fuzzy regression, and fuzzy least-squares regression. Results of the training and validation tests show that PFR
outperforms the other approaches in terms of training and validation errors.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Survey/experimental data is often used to develop empirical models
that relate the inputs and outputs of a system or process. Various
approaches for developing empirical models have been attempted.
These approaches include quantification theory I (Chang, 2008), ordinal
logistic regression (Barone et al., 2007), artificial neural networks (Lai
et al., 2005), fuzzy logic approach (Lau et al., 2006), multiple statistical
regression (Han et al., 2000), fuzzy linear regression (Sekkeli et al.,
2010), particle swarm optimization-based fuzzy regression (Chan et
al., 2011a), neural fuzzy systems (Kwong et al., 2009), kernel-based
nonlinear fuzzy regression (Su et al., 2013), fuzzy polynomial regression
based on fuzzy neural networks (Otadi, 2014), fuzzy regression models
using fuzzy distances (de Hierro et al., 2016), and fuzzy regression
models based on least absolute deviation (Li et al., 2016). Development
of empirical models using survey/experimental data often involves
both fuzziness and randomness. Fuzziness is mainly caused by human
subjective judgment and incomplete knowledge, and randomness often
originates from the variability of influences on the inputs and outputs
of a system or process. Only few previous studies have examined both
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fuzziness and randomness in empirical modeling. Watada et al. (2009)
proposed a confidence-interval-based fuzzy random regression approach
to address the uncertainties caused by fuzziness and randomness in mod-
eling. In their study, variables were regarded as known fuzzy numbers
and probabilities. Kwong et al. (2008) proposed a fuzzy least-squares re-
gression approach to capture fuzziness and randomness simultaneously
in modeling manufacturing processes. However, the approach does not
specifically address the randomness caused by independent variables.

Preference modeling is aimed at developing models to relate cus-
tomer preferences and design parameters where customer surveys are
commonly adopted to understand customers’ preferences and the survey
results are used to generate preference models. A number of studies
have been conducted to develop preference models via survey and
experimental data. Various statistical techniques, such as partial least
squares analysis (Nagamachi, 2008) and statistical linear regression
(Han et al., 2000; You et al., 2006) have been adopted to model customer
preference. However, in customer surveys, customers’ responses are
always imprecise such as ‘‘quite good’’ and ‘‘not very well’’. Thus, survey
results unavoidably contain a high degree of fuzziness. Numerous fuzzy
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approaches for preference modeling have been employed to address
the fuzziness in preference modeling. These approaches include fuzzy
inference techniques (Liu et al., 2007; Fung et al., 1999), fuzzy rule-
based approach (Lau et al., 2006; Park and Han, 2004; Fung et al., 1998)
fuzzy logic approach (Lin et al., 2007), fuzzy linear regression (Sekkeli
et al., 2010; Shimizu and Jindo, 1995; Chen et al., 2004), nonlinear
programming-based fuzzy regression (Chen and Chen, 2006), genetics-
based fuzzy regression (Chan et al., 2011b), chaos-based fuzzy regres-
sion (Jiang et al., 2013), a stepwise-based fuzzy regression (Chan et al.,
2015), and a forward selection-based fuzzy regression (Chan and Ling,
2016). However, all these techniques can only be utilized to deal with
either randomness or fuzziness in preference modeling. Kwong et al.
(2010) proposed a generalized fuzzy least-squares regression approach
to address both fuzziness and randomness in preference modeling. In
their proposed approach, Kwong et al. assumed that the estimation error
is random and the objective function minimizes the sum of the squares
of the residual error (Chang, 2001). However, the approach does not
consider the randomness caused by independent variables.

In the current study, a new approach to preference modeling,
namely, probabilistic fuzzy regression (PFR), is proposed. PFR can
address the fuzziness caused by human subjective judgment and the
randomness caused by random variables. Probability density functions
(PDFs) are adopted in the proposed approach to model the randomness
of independent (random) variables. A chaos optimization algorithm
(COA) is employed to determine the parameter settings of the PDFs, and
PDFs are then generated. The expected value functions of the random
variables based on the PDFs are then generated and incorporated
into the PFR models. Fuzzy regression analysis is then conducted to
determine the fuzzy coefficients for all the terms of the PFR model.

The remainder of the paper is organized as follows. Section 2
presents the proposed PFR. Section 3 describes a case study on mod-
eling consumer preference based on the proposed approach. Section 4
presents the validation of the proposed approach, and Section 5 provides
the conclusions.

2. Probabilistic fuzzy regression (PFR)

The general form of a fuzzy linear regression model can be expressed
as follows:

𝑌𝑖 = 𝐴0 + 𝐴1𝑥𝑖1 +⋯ + 𝐴𝑘𝑥𝑖𝑘 = 𝐴𝑥𝑖 (1)

where 𝑌𝑖, 𝑖 = 1, 2,… , 𝑛, is the predicted output, which is a fuzzy
number; 𝑛 is the number of data sets; 𝑥𝑖𝑗 , 𝑗 = 0, 1, 2,… , 𝑘 is the 𝑗th
independent variable of the 𝑖th data set; 𝑘 is the number of indepen-
dent variables; and 𝐴𝑗 is the fuzzy coefficient of the 𝑗th independent
variable. 𝐴𝑗 =

(
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𝑐
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𝑅
𝑗

)

, where 𝑎𝑐𝑗 , 𝑠
𝐿
𝑗 , and 𝑠𝑅𝑗 are the central value,

left-, and right-side spreads of the fuzzy coefficients, respectively. If
the fuzzy coefficients are symmetric fuzzy numbers, 𝑠𝐿𝑗 = 𝑠𝑅𝑗 ; 𝑥𝑖 =
[
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]

is a vector of the independent variables and 𝑥𝑖0 = 1,
and 𝐴 =

[
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]𝑇
is a vector of the fuzzy coefficients. The fuzzy

regression model, Eq. (1), can be rewritten as follows:
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𝑥𝑖𝑘. (2)

The predicted output of Eq. (1) can be presented as 𝑌𝑖 =
(

𝑌 𝑠𝐿
𝑖 , 𝑌 𝑐
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)

,
where 𝑌 𝑐

𝑖 , 𝑌 𝑠𝐿
𝑖 , and 𝑌 𝑠𝑅

𝑖 are the center, left-, and right-side spread values
of the output, respectively. The major processes of PFR are described in
the following subsections.

2.1. Determination of parameter settings of PDFs

The uncertainty of a random variable can be described by a PDF,
𝑓 (𝑥), which is a function defined in the interval [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] and has
the following properties.

(a) 𝑓 (𝑥) ≥ 0 for all 𝑥.
(b) ∫ 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛 𝑓 (𝑥) 𝑑𝑥 = 1.

𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, or both can be infinite.
The form of 𝑓 (𝑥) depends on the probability distribution of a

continuous random variable. Several PDFs, such as uniform, triangular,
Gaussian, and exponential functions, are commonly used. The parameter
settings of PDFs are determined using COA. COA is a stochastic search
algorithm in which chaos is introduced into the optimization strategy to
accelerate the optimum seeking operation and determine the global op-
timal solution (Ren and Zhong, 2011). COA employs chaotic dynamics
to solve optimization problems and it has been applied successfully in
various areas such as robot optimization control, function optimization
and supply chain optimization (Mishra et al., 2008). Compared with
conventional optimization methods, COA has faster convergence and
can search for better solutions (Nanba et al., 2002). This algorithm also
has an improved capacity to seek for the global optimal solution of an
optimization problem and can escape from a local minimum. Chaos has
dynamic properties, including ergodicity, intrinsic stochastic properties,
and sensitive dependence on initial conditions. The characteristic of
randomness ensures the capability for a large-scale search. Ergodicity al-
lows COA to traverse all possible states without repetition and overcome
the limitations caused by ergodic searching in general random methods.
COA uses the carrier wave method to linearly map the selected chaos
variables onto the space of optimization variables and then searches for
the optimal solutions based on the ergodicity of the chaos variables. The
processes of applying COA in this study are described as follows.

First, the number of iterations of COA is defined. Each chaos
variable represents the parameter settings of PDFs, and the number of
elements in a chaos variable is equal to the number of parameters to
be determined. The chaos variable is initialized in which the values are
selected randomly in the range [0, 1]. The ranges of parameters [𝑎, 𝑏]
are initialized, in which 𝑎 and 𝑏 are the lower and upper limits of the
optimization variable, respectively.

Second, the iteration number is set as 𝑚 = 1. Based on the initialized
chaos variable, the logistic model used in COA is shown in Eq. (3), and
logistic mapping can generate chaos variables through iteration.

𝑐𝑚 = 𝑓
(

𝑐𝑚−1
)

= 𝑢𝑐𝑚−1
(

1 − 𝑐𝑚−1
)

, (3)

where 𝑢 is a control parameter; 𝑐𝑚 ∈ [0, 1] is the 𝑚𝑡ℎ iteration value of
the chaos variable 𝑐; and 𝑐0 is the initialized chaos variable.

The linear mapping for converting chaos variables into optimization
variables is formulated as follows:

𝑞𝑚 = 𝑎 + (𝑏 − 𝑎) ⋅ 𝑐𝑚, (4)

where 𝑞𝑚 is the optimization variable and the value of 𝑞𝑚 is the
parameter settings of PDFs. Based on the iteration, the chaos variables
traverse between [0, 1], and the corresponding optimization variables
traverse in the corresponding range [𝑎, 𝑏]. In this case, the optimal
solution can be identified in the area of feasible solutions.

Based on the values of 𝑞𝑚, PDFs, 𝑓 (𝑥), are generated. The model
can be developed based on 𝑓 (𝑥) and fuzzy coefficients by which the
predicted output 𝑌𝑖 =

(

𝑌 𝑠𝐿
𝑖 , 𝑌 𝑐

𝑖 , 𝑌
𝑠𝑅
𝑖

)

can be obtained. The predicted
crisp output of 𝑌𝑖 is denoted as 𝑦𝑖, which is equal to the center value
𝑌 𝑐
𝑖 if symmetric triangular member functions are used in PFR. The

mean absolute percentage error (𝑀𝐴𝑃𝐸) is defined as the average of
percentage errors, which is scale-independent and is a popular measure
for evaluating prediction accuracy (Gilliland et al., 2015; Kim and Kim,
2016). Thus, MAPE was adopted in this study as the fitness function in
COA, which is defined as follows:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖||
𝑦𝑖

⋅ 100 (5)

where 𝑛 is the number of data sets; 𝑦𝑖 is the 𝑖th predicted crisp output of
𝑌𝑖 and 𝑦𝑖 is the 𝑖th actual crisp output based on survey data. The values
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