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a b s t r a c t

A class of Fuzzy rule-based Monotone Wiener Models (FMWMs) is introduced. These are transformation models
comprising a linear dynamical block and a memoryless nonlinearity. The smoothest dynamical block that has an
output which is comonotonic with the training data is sought. The dependence between the output of the linear
block and the output of the system is described via a set of fuzzy rules.

This paper considers systems with a sensitive dependence on the initial conditions and also with a moderate
amount of uncertainty in the initial state. A new learning algorithm is proposed that makes use of recent statistical
tests for assessing the comonotonicity of imprecisely perceived sequences of data.

The main aim of the proposed models is to estimate different health parameters of rechargeable batteries for
automotive use. For this practical application, FMWMs are shown to improve a selection of models with a varying
degree of embedded domain knowledge, ranging from first-principles models to universal approximators.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The reliability of the electric vehicles depends critically on the design
and management of battery packs (Garg et al., 2017). Unfortunately,
accurate on-vehicle assessments of the health of Li-ion batteries would
require of specialized laboratory equipment that is not compatible with
the intended use of these vehicles (Gordon et al., 2017). Nevertheless,
approximate electrochemical, intelligent, electrical and mathematical
models exist that can be used on-board (Chaoui et al., 2017).

Electrochemical models are arguably the most precise, but depend on
parameters that are either not provided by the manufacturer or change
from battery to battery (Zhang et al., 2017). In contrast, intelligent and
mathematical models and equivalent circuits do not suffer from this
limitation because they do not attempt to model the electrochemical
processes taking place in the electrodes. Their purpose is rather to
predict the observable outputs of the battery (current, voltage and
temperature). The ambiguities in a model arising from the presence of
unobservable variables (state of charge, state of health) are mitigated by
injecting prior knowledge about the problem domain and combining it
with the knowledge that is revealed in the data. This domain knowledge
can be explicit, taking the form of constraints on the values of the
learned parameters, or be implicitly built into the structure of the
model, as occurs, for instance, with grey boxes and semi-physical models
(Lindskog and Ljung, 1995).

* Corresponding author.
E-mail address: luciano@uniovi.es (L. Sánchez).

A balance must exist between those elements of the dynamic be-
haviour of the system that are taken for granted and those that are
learned from data, as embodying domain knowledge in the learning task
reduces the degree of uncertainty in the model while, at the same time,
raising the degree of systematic error (Barlow, 2017). Thus, the first
challenge for the problem being addressed in this paper is to ascertain
the minimum amount of knowledge to be injected in the model. On the
one hand, if too many assumptions are made, some of them will not hold
and the systematic error will increase. On the other, if the dynamics
of the model are left unrestricted, the amount of data that is needed
to fit the model parameters will grow exponentially. In this paper it
is proposed that the only knowledge embedded in the battery model
consists in enforcing the monotonicity of certain nonlinear blocks in the
transference function of the model. The rationale behind this premise
arises from the observation that the voltage of a resting battery and its
charge are also comonotonic. It has been stated that the most widely
studied monotonic dynamical models are monotone Hammerstein or
Wiener models, which consist in a composition of a linear system with
a memoryless nonlinear monotone function (Schetzen, 2010). For in-
stance, any digitally sampled system can be regarded as the composition
of a continuous system and a staircase function. Saturations, dead zones,
backlashes and different kinds of hysteresis also match this kind of
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prior information: monotonic dynamic models have a wide range of
applicability.

To the best of our knowledge, all data-driven battery models to date
have been learned through prediction error methods (PEMs) (Ungurean
et al., 2017). PEMs depend on a parametric definition of the model;
while the learning task consists in finding the values of the free param-
eters in the model that minimize the prediction error, given a training
dataset comprising two temporal sequences: inputs to the system and
measured outputs (Ljung, 2002). In contrast, Monotone Wiener (MW)
models can be learned through transformation models (Belle et al.,
2011) such as MINLIP (Pelckmans, 2011), which are less restrictive
than PEMs in the parametric definition of the model. MINLIP does not
aim to minimize the prediction error, but redefines the identification as
the search for the simplest model that approximately interpolates the
measured outputs. This search is performed in two stages: (i) a smooth
dynamic linear model is found whose predictions are comonotonic with
the observed outputs, without taking into account the prediction error,
and (ii) a memoryless nonlinear mapping is defined from the predictions
of the linear part to the output of the system. This last nonlinear
mapping is a by-product of the learning and does not depend on a prior
parametric definition. For this reason, MINLIP is potentially resilient to
the epistemic uncertainty mentioned previously.

It will be shown in this paper that transformation models are mean-
ingful for this research topic because the nonlinear mapping in the MW
model carries information about the battery’s health that may be more
accurate than state-of-the-art approaches to this problem (Abu-Sharkh
and Doerffel, 2004; Xu et al., 2014). However, it is not possible to apply
the MINLIP algorithm to battery models, because these do not have a
Finite Impulse Response (FIR) (Ljung, 1998) and the MINLIP algorithm
depends on this property. The second challenge of this research study is
to extend MINLIP to non-FIR data. Furthermore, a linguistic description
of the nonlinearity is convenient for this problem, as the state of
health can be retrieved from this description. Accordingly, this paper
also aims to introduce a linguistically understandable definition of the
nonlinearity through a new category of models that will be called Fuzzy
rule-based Monotone Wiener Models (FMWM) in what follows.

Finally, it should be noted that algorithms for learning monotone dy-
namical models are related to other machine learning problems different
from system identification. Isotonic regression or classification is a well
known problem (Ben-David, 1995; Gutiérrez and Garcia, 2016) and soft
computing-based techniques exist that search for a set of linguistic rules
that obey monotonicity assumptions (Fernández et al., 2015). To the
extent of our knowledge, however, the isotonic assumption has not yet
been fully developed for fuzzy Wiener or Hammerstein models (Abonyi
et al., 2000).

This paper is organized as follows. Section 2 reviews monotone
Wiener models and the MINLIP algorithm. Section 3 introduces FMWMs
and an extension of the MINLIP algorithm for non-FIR systems. Numer-
ical results are discussed in Section 4: an illustrative example is worked
first, followed by the description of a practical application in which the
state of health of a battery is measured using the proposed algorithm.
The results thus obtained are compared with those of a selection of
algorithms. The conclusions of the paper are presented in Section 5.

2. Monotone Wiener models and the MINLIP algorithm

As already stated, Wiener models are block-oriented models in which
a linear dynamical subsystem is followed by a static nonlinear function.
Formally, a Wiener model (𝑓, 𝜃) comprises a linear dynamical model
defined by the parameter 𝜃, applied to an input variable {𝑢𝑡}𝑡, 𝑢𝑡 ∈ R𝑚,
and a nonlinear function 𝑓 ∶ R → R applied to the output of the
linear model. The static nonlinearity 𝑓 (⋅) has variously been represented
by polynomials (Bai, 2002), piecewise linear maps (Wigren, 1993),
splines (Zhu, 2002), neural networks (Al-Duwaish et al., 1996), support
vector machines (Goethals et al., 2005), local linear models (Kozek and
Sinanović, 2008), and kernel regression (Greblicki, 1992). Fuzzy Wiener

Models (FWMs) make use of a Fuzzy Rule-Based System (FRBS) to model
the function 𝑓 (Abonyi et al., 2000; Tang and Li, 2013).

Let the output of the linear subsystem be {𝑧𝑡}𝑡, 𝑧𝑡 ∈ R. Thus, the
output of the Wiener model is the sequence {�̂�𝑡}𝑡, where �̂�𝑡(𝑓, 𝜃) = 𝑓 (𝑧𝑡).
This sequence depends on the input sequence {𝑢𝑡}𝑡, the parameter 𝜃 and
the nonlinear function 𝑓 . In the particular case of the system being FIR,
there is a value 𝑑 such that {�̂�𝑡}𝑡>𝑑 is independent of the initial conditions
of the system. This point is emphasized, as it will be subsequently shown
later that this hypothesis does not hold for the problems addressed in
this paper.

Given a pair of sequences {𝑦𝑡}𝑡 and {𝑢𝑡}𝑡, the purpose of the learning
algorithm for FIR systems is to find the value of 𝜃 and the function 𝑓
for which the sequence {�̂�𝑡}𝑡 best approximates the true output of the
system {𝑦𝑡}𝑡. PEMs aim to minimize the following risk:

risk(𝑓, 𝜃) =
𝑇
∑

𝑡=𝑑
(�̂�𝑡(𝑓, 𝜃) − 𝑦𝑡)2. (1)

As 𝑓 is monotone, a constraint is added. Thus, learning a model consists
in solving the following optimization problem:

min risk(𝑓, 𝜃)

s.t. 𝑥 ≤ 𝑦 implies 𝑓 (𝑥) ≤ 𝑓 (𝑦). (2)

The MINLIP algorithm (Belle et al., 2011; Pelckmans, 2011) is a
recent alternative to constrained PEMs in which the purpose of the
learning is redefined so as to find the simplest function that interpolates
the data. The noiseless problem can be formulated as follows:

min complexity(𝑓 )

s.t. �̂�𝑡(𝑓, 𝜃) = 𝑦𝑡, for all 𝑡 = 𝑑 + 1,… , 𝑇 . (3)

The set of assumptions on which this algorithm depends and the
definition of this algorithm when the data is noisy are described in
Appendix A.

3. Extended MINLIP for MISO and non-FIR systems

It is safe for damped systems to assume independence between the
output of the system and its initial conditions, as wrong estimations
of the initial state influence only the initial predictions 𝑡 = 1… 𝑑, and
these periods have been ignored in the definition of the previously seen
optimization problems (see Eq. (3)).

However, this assumption is problematic for lightly damped systems
(Juang, 1994). For instance, batteries, which have prompted this study,
have a strong dependence on their initial conditions. When a battery is
being discharged, neither the initial value of the state variables (e.g. the
charge of the battery) nor the influence of the inputs (e.g. charging
current) can be neglected at any point in the future. Although strictly
speaking battery models are stable, 𝑑 is larger than the simulation
horizon; thus inaccurate measurements of the initial state invalidate
the predictions of the model. Dropping the FIR assumption requires
introducing a full state-space model in the MINLIP framework. Details
of the proposed definition of a State-Space Wiener Model (SSWM) are
given in Section 3.1.

Note that this formulation is also valid for Multiple Input, Single
Output (MISO) FIR systems, as explained in the following subsections.
However, non-FIR systems or non MISO FIR systems are not addressed
by this method. An extended algorithm is proposed in the following
subsection that solves those cases where the aforementioned conditions
are not met.

3.1. State space Wiener models

Let a linear subsystem be defined by the following state-space
equations:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 (4)
𝑧𝑡 = 𝐶𝑥𝑡 +𝐷𝑢𝑡 (5)
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