Engineering Applications of Artificial Intelligence 60 (2017) 57-70

journal homepage: www.elsevier.com/locate/engappai

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

Intelligence

PbMMD: A novel policy based multi-process malware detection

Seyyed Mojtaba Bidoki, Saeed Jalili*, Asghar Tajoddin

Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

@ CrossMark

ARTICLE INFO ABSTRACT

Keywords:

Malware detection
Behavior-based detection
Multi-process malware
Reinforcement Learning

Contemporary malware makes wide use of techniques to evade popular detection approaches. Behavior-based
detection is the most powerful approach to malware detection. This approach is based on system call sequences
to model a malicious behavior. A recently immersed malware to defeat behavior-based detection approach is
Multi-process malware. This malware is the consequence of multiple processes cooperating to fulfill a malicious
task each of which performing a partition of main task and none of them shows an identifiable malicious

behavior. In this paper, we have presented a new method called PbMMD for detecting Multi-process malware.
In this method, we attempt to inspect the whole processes running on the system and discover collaborative
processes by finding processes running along a common execution policy. Beforehand we have learned different
execution policy by employing reinforcement algorithm. Finally we decide against a Multi-process malicious
behavior by analyzing the cumulative behavior of identified collaborative processes.

1. Introduction

Malware is any software designed to carry out abusive activities like
unauthorized access to system resources, disruption of operation and
data and so on (Bayer et al., 2006). Every year millions of malware are
produced but a lot of them are clone. So they are modified versions of
known malware using techniques to evade existing detection ap-
proaches. There are two popular approaches to malware detection
called signature-based and behavior-based detection (Idika and
Mathur, 2007). In signature-based detection a binary code is analyzed
based on its byte code structure without being executed. This approach
suffers from two major drawbacks. The first one is its inability to detect
unknown malware. Therefore a significant endeavor needs to be
devoted to keeping update the signature repository of detection
engines. These new signatures are caught by monitoring internet
traffics or using honeypots. The second one is its weakness against
evasion mechanisms because of its essence of inspecting sole syntac-
tical aspect of binaries. Each procedure changing the syntactical
structure with maintaining semantics can be a potential threat to this
approach. There are numerous evasion techniques to signature-based
detection approach like using an encryption and decryption routine in
the malware (Runwal et al., 2012) and metamorphism technique
(Konstantinou and Wolthusen, 2008). ROP' is also a technique for
evading signature based detection. ROP is a technique by which an
arbitrary behavior is induced in a program whose control flow has been
diverted ((Roemer et al., 2012; Microsoft Security Intelligence Report —

* Corresponding author.

2016)).

Another popular approach to malware detection is behavior-based
detection that inspects semantic and behavioral characteristics of
programs. In this way program under examination is executed in an
isolated controlled system like sandbox and then its behavioral
specifications like sequence of system calls are extracted for analysis
(Jacob et al., 2008; Beaucamps and Marion, 2009; Bose et al., 2008;
Ellis et al.,, 2004). Behavior-based approach often makes use of
anomaly strategy for distinguishing between malware and benign
programs (Chandola et al., 2009; Ellis et al., 2004). In anomaly
strategy, two consecutive phases, Learning (training) phase and detec-
tion (test) phase are considered. In the learning phase by using
learning techniques a set of programs (most are benign) are analyzed
based on their behavioral features to extract a normal behavior (Park
et al., 2010; Newsome, Song, 2005; Agrawal and Horgan, 1990). In the
detection phase, the deviation amount of the program under inspection
from the normal behavior forms the basis for detection. Since anomaly
detection suffers from high false positive rate, specification based
detection (Sekar et al., 2002) is devised to mitigate this shortcoming.
In this approach the system is inspected in order to approve accurate
security policies and learn all normal and acceptable behaviors
according to the system rules that are applied to the system. Several
major techniques have also been presented by malware writers to evade
behavior based detection. An evasive approach for behavior based
detection is to obfuscate system calls in order to conceal the meaningful
relationship between system calls for example reordering system calls

E-mail addresses: s.bidoki@modares.ac.ir (S.M. Bidoki), s.jalili@modares.ac.ir (S. Jalili), a.tajoddin@modares.ac.ir (A. Tajoddin).

1 Return Oriented Programming.

http://dx.doi.org/10.1016/j.engappai.2016.12.008

Received 18 December 2015; Received in revised form 14 August 2016; Accepted 5 December 2016

0952-1976/ © 2016 Published by Elsevier Ltd.


http://www.sciencedirect.com/science/journal/09521976
http://www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.12.008
http://dx.doi.org/10.1016/j.engappai.2016.12.008
http://dx.doi.org/10.1016/j.engappai.2016.12.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.12.008&domain=pdf

S.M. Bidoki et al.

or obfuscating the argument of system calls (Vinod et al., 2009). Lu,
et al (Lu et al., 2013) presented a method called ISA? to defeat this
evasion technique. This technique uses sequence alignment to recog-
nize system calls obfuscations. Naval et al (Naval et al., 2015) proposed
an Evasion-proof solution that is not vulnerable to system call injection
attacks.

Multi-process malware is another family of malware designed
for evading behavior based detection (Fan et al., 2015; Ji et al.,
2014; Ma et al., 2012; Ramilli et al., 2011). This kind of malware
profits from the defect of behavior-based detection approach that it
focuses on a single process (and its children) for probing a
suspicious behavior. For creating a Multi-process malware, a
malicious task is broken into several different parts each of which
is not malicious by itself (not trigger antivirus’ alarm) and each part
distributed into a separate process so that the processes have no
parent/child relationships. Then these processes are executed such
that the parts are executed in the right order of time. In the other
hand the malicious task is carried out and the same cumulative
effect is made as the single-process malware could make. For
creating Multi-process malware an important issue in practice is
how to make multiple processes execute in the right order of time.
In other words how to coordinate the cooperating processes such
that the main task with the real cumulative effect is performed.
Therefore Multi-process malware is categorized into two different
modes based on coordination method (Fan et al., 2015): 1) master/
salve mode: in this mode a separate process is considered for the
sole objective of coordinating collaborative processes. The pro-
cesses constituting malicious task are referred to as slave processes
and the coordinating process as master process. Slave processes
just communicate with master process to get informed of when and
how to be executed. 2) Relay race mode: in this mode the processes
themselves communicate with each other with inter-process com-
munication mechanisms in order to send required messages for
coordination. In other words there is no independent separate
process in charge of coordinating other processes. Multi-stage
malware (Ramilli and Bishop, 2010) is another kind of evasive
malware. In this way a malware is broken into several components
each of which is embedded in a new file so that none of the files are
identified as a malware. These files as well as a new data object
called main actor is loaded on the system. Main actor is responsible
for finding the files, integrating and executing them.

Till now only one approach for detecting Multi-process malware
has been presented by Fan et al. (2015). This approach is specia-
lized for analyzing a particular category of Multi-process malware
called privacy-theft Multi-process malware that endanger data
privacy. In this approach, first, privacy-theft malware is modeled
by an abstract framework called privacy petri net based on petri net
framework. Petri net is a powerful mathematical framework with
formal syntactical and semantic definitions as well as graphical
representation of concepts to describe program behavior specifica-
tions. Fan et al does not cover a Multi-process version of all
malware families. This approach suffers from the flaw of needing
definition for malicious behavior models by human, and if the
Multi-process malware does not behave according to the predefined
behavior model, the approach is frustrating. The approach is
dependent on the way processes communicate that is called
model-dependent. For example if a process employs covert channel
for communication instead of simple IPCs, the approach is no
longer effective. Note that Ji et al (Ji et al., 2016) proposed a spatial
correlation based method to detect multiple process social bots.

Our proposed method, PbMMD,” analyzes Multi-process malware
based on execution policy. First, in the learning phase, different

2 Jterative sequence alignment.
3 Policy based Multi-process Malware Detection.

58

Engineering Applications of Artificial Intelligence 60 (2017) 57-70

execution policy are learned by employing Reinforcement Learning
Algorithm. In addition, a single-process malware detector is learned by
employing reinforcement learning algorithm as a classifier. In the
detection phase, System calls caused by the process under analysis and
the whole processes created during its life are extracted because any of
the processes has the potential of cooperating with the process under
analysis, then some collaborative processes are discovered by checking
if they are pursuing a common execution policy. Then cumulative
behavior of collaborative processes is attained by collecting system calls
created by collaborative processes in temporal order and then its
maliciousness is diagnosed by the single-process malware detector
previously learned. Our method is a comprehensive and model
independent framework that has no limitation on the kind of malware
family. In addition it achieves more accurate results rather than the
previous method.

The reminder of this paper is organized as follows: Section 2
describes the basic concepts required for presenting our proposed
method. Section 3 presents PbMMD. Section 4 reports experimental
results. Finally Section 5 draws some conclusions.

2. Basic concepts
2.1. Reinforcement Learning

2.1.1. Definition

Reinforcement learning (RL) algorithm is a machine learning
algorithm engaged in specifying a method through which agents
interact with an environment in order to maximize some total reward
for achieving a specific goal (Sutton and Barto, 1998). In supervised
learning the sample (input, output) pairs of the function prevailing over
the environment is perceived and we strive to predict this function.
Therefore in supervised learning we receive instant feedbacks as if a
teacher takes us to the goal. In RL as the agent takes an action on the
environment, it receives some feedbacks (reward) and the appropriate
actions are those which maximize the total reward but at each state we
are not aware of which action to be the correct one in achieving the
goal. In RL unlike supervised learning we are not told what to do but
only how well we have been doing in the past. What a RL program does
is that it learns to generate an internal value for the intermediate states
or actions in terms of how good they are in leading us to the goal and
getting us to the real reward (Sutton and Barto, 1998).

RL algorithm is based on the Markov Decision Process (MDP).
MDP is satisfied if three conditions are hold (Alpaydin, 2014): 1)
Following a state transition model: having a model by which to know if
we are at current state S, on taking action a to which next state S’ we
will be transferred. 2) Owning a reward model or function: To have a
model or function by which we know when we move from state S to
state S’ what reward we receive in return. 3) Having a state transition
probability model or function: To have a model to know when we take
action a at state S how likely it is to be transferred to state S’. In
deterministic environments we have P, (s,s")=1.

2.1.2. Using RL for classification

RL can be employed as a classifier to distinguish between two
classes. One example is anomaly behavior-based detection such as host
based intrusion detection. We have a quick look at how RL is used for
host based intrusion detection (Xu, 2010; Xu and Xie, 2005). In RL-
based intrusion detection, there are two separate phases, model
training phase and detection (test) phase, respectively. During model
training phase what we have is audit data from a host computer
including two classes of traces, i.e., the normal traces and attack
(abnormal) traces as well as a reward function associated with the
underlying markov model. During applying a RL algorithm like TD,"

“ Temporal difference.



Download English Version:

https://daneshyari.com/en/article/4942715

Download Persian Version:

https://daneshyari.com/article/4942715

Daneshyari.com


https://daneshyari.com/en/article/4942715
https://daneshyari.com/article/4942715
https://daneshyari.com

