
Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Metaheuristic design of feedforward neural networks: A review of two
decades of research

Varun Kumar Ojhaa,⁎, Ajith Abrahamb, Václav Snášela

a Department of Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
b Machine Intelligence Research Labs (MIR Labs), Auburn, WA, USA

A R T I C L E I N F O

Keywords:
Feedforward neural network
Metaheuristics
Nature-inspired algorithms
Multiobjective
Ensemble

A B S T R A C T

Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among
the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various
perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning
environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization
ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs.
Its success is evident from the FNN's application to numerous real-world problems. However, due to the
limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolu-
tionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain
generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization
methodologies including conventional and metaheuristic approaches. This article also tries to connect various
research directions emerged out of the FNN optimization practices, such as evolving neural network (NN),
cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc.
Additionally, it provides interesting research challenges for future research to cope-up with the present
information processing era.

1. Introduction

Back in 1943 McCulloch and Pitts (1943) proposed a computational
model inspired by the human brain, which initiated the research on
artificial neural network (ANN). ANNs are capable of learning and
recognizing and can solve a broad range of complex problems.
Feedforward neural networks (FNNs) are the special type of ANN
models. The structural representation of an FNN makes it appealing
because it allows perceiving a computational model (a function) in a
structural/network form. Moreover, it is the structure of an FNN that
makes it a universal function approximator, which has the capabilities
of approximating any continuous function (Hornik, 1991). Therefore, a
wide range of problems is solved by the FNNs, such as pattern
recognition (Jain et al., 2000), clustering and classification (Zhang,
2000), function approximation (Selmic and Lewis, 2002), control (Lam
and Leung, 2006), bioinformatics (Mitra and Hayashi, 2006), signal
processing (Niranjan and Principe, 1997), speech processing (Gorin
and Mammone, 1994), etc.

The structure of an FNN consists of several neurons (processing
units) arranged in layer-by-layer basis and the neurons in a layer have
connections (weights) from the neurons at its previous layer.

Fundamentally, an FNN optimization/learning/training is met by
searching an appropriate network structure (a function) and the
weights (the parameters of the function) (Haykin, 2009). Finding a
suitable network structure includes the determination of the appro-
priate neurons (i.e., activation functions), the number of neurons, and
the arrangements of neurons, etc. Similarly, finding the weights
indicates the optimization of a vector representing the weights of an
FNN. Therefore, learning is an essential and distinguished aspect of the
FNNs.

Numerous algorithms, techniques, and procedures were proposed
in the past for the FNNs optimization. Earlier, in FNN research, only
the gradient-based optimization techniques were the popular choices.
However, gradually because of the limitations of gradient-based
algorithms, the necessity of metaheuristic-based optimization methods
were recognized.

Metaheuristics formulate the FNN components, such as weights,
structure, nodes, etc., into an optimization problem. Metaheuristics
implement various heuristics for finding a near-optimum solution.
Additionally, a multiobjective metaheuristic deals with the multiple
objectives simultaneously. The existence of multiple objectives in the
FNNs optimization is evident since the minimization of FNN's approx-

http://dx.doi.org/10.1016/j.engappai.2017.01.013
Received 7 December 2016; Received in revised form 20 January 2017; Accepted 23 January 2017

⁎ Corresponding author.

Engineering Applications of Artificial Intelligence 60 (2017) 97–116

0952-1976/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/09521976
http://www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2017.01.013
http://dx.doi.org/10.1016/j.engappai.2017.01.013
http://dx.doi.org/10.1016/j.engappai.2017.01.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2017.01.013&domain=pdf


imation error is desirable at one hand, and the generalization and
model's simplification is at the other.

In a metaheuristic or multiobjective metaheuristic treatment to an
FNN, an initial population of FNNs is guided towards a final popula-
tion, where usually the best FNN is selected. However, selecting only
the best FNN from a population may not always produce a general
solution. Therefore, to achieve a general solution without any signifi-
cant additional cost, an ensemble of many candidates chosen from a
metaheuristic final population is recommended.

This article provides a comprehensive literature review to address
the various aspects of the FNN optimization, such as:

1. The importance of an FNN as a function approximator and its
preliminary concepts (Section 2), including the introduction to the
factors influencing the FNN optimization (Section 2.2) and intro-
duction to the conventional optimization algorithms (Section 2.3).

2. The role of metaheuristics and hybrid metaheuristics in FNNs
optimization (Section 3).

3. The role of multiobjective metaheuristics (Section 4) and the
ensemble methods (Section 5).

4. The current challenges and future research directions (Section 6).

2. Feedforward neural networks

The intelligence of human brain is due to its massively parallel
neurons network system. In other words, the architecture of the brain.
Similarly, a proper design of an ANN offers a significant improvement
to a learning system. The components, such as nodes, weights, and
layers are responsible for the developments of various ANN models.

A single layer perceptron (SLP) consists of an input and an output
layer, and it is the simplest form of ANN model (Rosenblatt, 1958; Jain
et al., 1996). However, SLPs are incapable of solving nonlinearly
separable patterns (Minsky and Papert, 1988). Hence, a multilayer
perceptron (MLP) was proposed, which addressed the limitations of
SLPs by including one or more hidden layers in between an input and
an output layer (Werbos, 1974). Initially, the backpropagation (BP)
algorithm was used for the MLP training (Rumelhart et al., 1986). A
trained MLP was then found capable of solving nonlinearly separable
patterns (Rumelhart et al., 1986). In fact, MLPs (in general FNNs) are
capable of addressing a large class of problem pertaining to pattern
recognition and prediction. Moreover, an FNN is considered as a
universal approximator (Hornik, 1991). Cybenko (1989) referring
to Kolmogorov's theorem1 showed that an FNN with only a single
internal hidden layer—containing a finite number of neurons with any
continuous sigmoidal nonlinear activation function—can approximate
any continuous function. Also, the FNN structure (architecture) is itself
capable enough to be a universal approximator (Hornik et al., 1989;
Hornik, 1991). Hence, several researchers praised FNN for its uni-
versal approximation ability (Kŭrková, 1992; Leshno et al., 1993;
Huang and Babri, 1998; Huang et al., 2006a).

Many other ANN models, like radial basis function (Lowe and
Broomhead, 1988) and support vector machine (Cortes and Vapnik,
1995) are a special class of three-layer FNNs. They are capable of
solving regression and classification problems using supervised learn-
ing methods. In contrast, adaptive resonance theory (Grossberg, 1987),
Kohenen's self-organizing map (Kohonen, 1982), and learning-vector-
quantization (Kohonen, 1982) are two-layer FNNs that are capable of
solving pattern recognition and data compression problems using
unsupervised learning methods.

Additionally, the ANN architecture with feedback connections, in
other words, a network where connections between the nodes may

form cycles is known as a recurrent neural network (RNN) or
feedback network model. The RNNs are good at performing sequence
recognition/reproduction or temporal association/prediction tasks.
RNNs such as Hopfield network (Hopfield, 1982) and Boltzmann
machine (Ackley et al., 1985) are good at the application for memory
storage and remembering input–output relations. Moreover, Hopfield
network was designed for solving nonlinear dynamic systems, where
the stability of a dynamic system is studied under the neurodynamic
paradigm (Hopfield, 1982).

A collection of RNN models, such as temporal RNN (Dominey,
1995), echo state RNN (Jaeger, 2001), liquid state machine
(Natschläger et al., 2002) and backpropagation de-correlation (Steil,
2004) forms a paradigm called reservoir computing, which addresses
several engineering applications including nonlinear signal processing
and control. Although some other ANN models that are capable of
doing a similar task that of the FNNs were pointed out in this Section,
the discussion in this article is; however, limited to only FNNs.

2.1. Components of FNNs

FNNs are the computational models that consist of many neurons
(node), which are connected using synaptic links (weights) and are
arranged in layer-by-layer basis. Thus, the FNNs have a specific
structural configuration (architecture) in which the nodes at a layer
have forward connections from the nodes at its previous layer
(Fig. 1(a)). A node of an FNN is capable of processing information
coming through the connection weights (Fig. 1(b)). Mathematically, the
output yi (excitation) of a node (node indicated as i) is computed as:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑y φ w z b= + ,i i

j

n

j
i

j
i i

=1

i

(1)

where ni is the total incoming connections, zi is the input, wi is the
weight, bi is the bias, and φ(·)i is the activation function at the i-th node
to limits the amplitude of the output the node into a certain range.

Fig. 1(a) is a structural representation of an FNN, i.e., a phenotype
of a function f x w( , ), which is parameterized by a p-dimensional input
vector x x xx = 〈 , , …, 〉p1 2 and an n-dimensional real-valued weight
vector w w ww = 〈 , , …, 〉n1 2 . The function f x w( , ) is a solution of a
problem. Therefore, two tasks involved in solving a problem using an
FNN are: to discover an appropriate function f x w( , ) (i.e., the
architecture optimization) and to discover an appropriate weight vector
w (i.e., the weights optimization) using some learning algorithm.

The architecture optimization indicates the search for the appro-
priate activation functions at the nodes, the number of nodes, number
of layers, the arrangements of the nodes, etc. Therefore, several
components of an FNN optimization are: the connection weights;
the architecture (number of layers in a network, the number of nodes
at the hidden layers, the arrangement of the connections between
nodes); the nodes (activation functions at the nodes); the learning
algorithms (algorithms training parameters); and the learning
environment. However, traditionally, the only component that was
optimized was the weights of the connections by keeping other
components fixed to the initial choice.

2.2. Influencing factors in FNN optimization

2.2.1. Learning environments
An FNN is trained by supplying the training data (X Y, ) of N input–

output pairs, i.e., X x x x= ( , , …, )N1 2 and Y y y y= ( , , …, )N1 2 . Each input
x x xx = 〈 , , …, 〉i i i ip1 2 is a p-dimensional vector, and it has a correspond-

ing q-dimensional desired output vector y y yy = 〈 , , …, 〉i i i iq1 2 . For the

training data (X Y, ), an FNN produces an output Y y y y= ( , , …, )N1 2 ,
where a vector y y yy = 〈 , , …, 〉i i i iq1 2 is a q-dimensional FNNs output,
which is then compared with the desired output yi, for all i = 1 to N by

1 Kolmogorov's theorem: “All continuous functions of n variables have an exact
representation in terms of finite superpositions and compositions of a small number of
functions of one variable (Kolmogorov, 1957).”

V.K. Ojha et al. Engineering Applications of Artificial Intelligence 60 (2017) 97–116

98



Download English Version:

https://daneshyari.com/en/article/4942718

Download Persian Version:

https://daneshyari.com/article/4942718

Daneshyari.com

https://daneshyari.com/en/article/4942718
https://daneshyari.com/article/4942718
https://daneshyari.com

