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A B S T R A C T

Even though various frameworks exist for reasoning under uncertainty, a realistic fault diagnosis task does not
fit into any of them in a straightforward way. For each framework, only part of the available data and knowledge
is in the desired format. Moreover, additional criteria, like clarity of inference and computational efficiency,
require trade-offs to be made. Finally, fault diagnosis is usually just a subpart of a larger process, e.g. condition-
based maintenance. Consequently, the final goal of fault diagnosis is not (just) decision making, and the
outcome of the diagnosis process should be a suitable input for the subsequent reasoning process. In this paper,
we analyze how a knowledge-based diagnosis task is influenced by uncertainty, investigate which additional
objectives are of relevance, and compare how these characteristics and objectives are handled in two well-known
frameworks, namely the Bayesian and the Dempster-Shafer reasoning framework. In contrast to previous
works, which take the reasoning method as the starting point, we start from the application, knowledge-based
fault diagnosis, and examine the effectiveness of different reasoning methods for this specific application. It is
concluded that the suitability of each reasoning method highly depends on the problem under consideration and
on the requirements of the user. The best framework can only be assigned given that the problem (including
uncertainty characteristics) and the user requirements are completely known.

1. Introduction

Condition-based maintenance is a promising preventive mainte-
nance strategy to reduce system downtime and costs. An important
task within the condition-based maintenance process is the determina-
tion of the actual system health based on measurement data, hereafter
referred to as “fault diagnosis”. In practice, fault diagnosis is a
challenging task, among other things, due to the presence of uncer-
tainty. Especially for safety-critical systems, like medical devices,
railway systems, and nuclear reactors, is it important to deal with the
uncertainty in an adequate way.

Although a lot of research has been devoted to fault diagnosis,
relatively little attention has been paid to the consequences of
uncertainty. Many existing methods account for part of the uncertainty,
e.g. methods based on Kalman filters (Chen and Patton, 1996; Li et al.,
2012; Mrugalski, 2013; Combastel, 2015) or methods based on set-
membership approaches (Puig, 2010; Blesa et al., 2011). Such methods
however adopt strong assumptions regarding the type of uncertainty
present, and require that the system can be described by a specific
model, often a linear state space model. Besides, data-based methods,
e.g. methods based on neural-networks (Tayarani-Bathaie et al., 2014;

Du et al., 2014), have been proposed that may implicitly account for
various types of uncertainty. However, such methods are, in general,
not able to clearly express the uncertainty in the diagnostic result,
yielding that the uncertainty cannot be adequately accounted for in the
subsequent decision making process.

Because of the aforementioned drawbacks of existing methods with
respect to uncertainty handling, in this paper we focus on uncertainty
reasoning for knowledge-based fault diagnosis. Knowledge-based
diagnosis is considered because in many practical applications not
enough knowledge is available to define a quantitative model required
by model-based approaches. Knowledge-based fault diagnosis is influ-
enced by uncertainty in various ways: First, the available measurement
data may be incomplete, incorrect, or imprecise, e.g. due to sensors
with a limited accuracy; Second, knowledge is needed to infer system
health from these uncertain data. Also this knowledge is generally
uncertain, i.e. (partly) incorrect, subjective, or incomplete.

Despite of the development of various methods for reasoning under
uncertainty and the many discussions about the correctness and
usefulness of these methods (Lindley, 1987; Cheeseman, 1985;
Smets, 1992, 1994; Dubois et al., 1996; Ferson and Ginzburg, 1996;
Dubois and Prade, 2001; Cobb and Shenoy, 2003), no agreement has
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been reached regarding a consistent and uniform framework to handle
problems under uncertainty. In particular the disagreement about the
correctness and usefulness of the Bayesian and the Dempster-Shafer
framework has led to debates. Bayesian proponents claim that the
Bayesian theory is the optimal framework to handle all kinds of
uncertainty (see e.g. the works by Lindley (1987); Cheeseman
(1985)). To quote Dennis Lindley, an eminent probabilist (Zadeh,
2008), “probability is the only sensible description of uncertainty and is
adequate for all problems involving uncertainty. All other methods are
inadequate” and “anything that can be done with fuzzy logic, belief
functions, upper and lower probabilities, or any other alternative to
probability can better be done with probability.” While Bayesian
proponents are convinced about their framework, shortcomings are
claimed by many researchers (see e.g. the works by Smets (1992,
1994); Dubois and Prade (2001); Dubois et al. (1996); Ferson and
Ginzburg (1996); Cobb and Shenoy (2003); Haenni (2003); Shafer
(1990)). For example, Smets (1992, 1994); Haenni (2003); Shafer
(1990) argue for the need of belief functions and for their added value
over probabilities. Especially, they promote belief functions for being
superior in representing incomplete and partially reliable knowledge.
Dubois et al. (1996) conclude that the Bayesian approach is tailored for
decision making, but not necessarily for other kinds of reasoning.
Ferson and Ginzburg (1996); Dubois and Prade (2001) consider
different sources of uncertainty, all having their own characteristics,
and they argue that each of these uncertainty sources requires another
reasoning strategy. In contrast, Cobb and Shenoy (2003) advocate that
the Bayesian and Dempster-Shafer frameworks have roughly the same
expressive power.

In this paper, we compare Bayesian and Dempster-Shafer reason-
ing from an application-oriented point of view. In contrast to previous
works, which take the reasoning method as the starting point and use
examples to illustrate the effectiveness of the method, we start from the
application, i.e. knowledge-based fault diagnosis, and examine the
effectiveness of different reasoning methods for this specific applica-
tion. More specifically, the contributions of this paper are:

1. We analyze how the available data and knowledge are influenced by
uncertainty;

2. We compare how the knowledge-based fault diagnosis task fits
within the Bayesian and Dempster-Shafer reasoning framework;

3. We present additional objectives (e.g. clarity of inference) and
analyze how they are accounted for in both reasoning frameworks.

Note that our aim is not to deeply discuss uncertainty methods nor to
advocate one of the methods in general. We focus on a specific problem
with the related objectives, for which we assess under which circum-
stances which method is most suitable to reach these objectives.

Note that this paper is an improved and extended version of our
conference paper (Verbert et al., 2015). In particular, the current paper
adds the following elements: a thorough analysis of the knowledge-
based fault diagnosis problem in both the Bayesian and the Dempster-
Shafer framework, as well as a more extensive comparison and
example.

The remainder of this paper consists of three parts: The first part
(Section 2 till Section 4) discusses general concepts regarding reason-
ing under uncertainty. In the second part (Section 5 till Section 7), we
analyze the uncertain reasoning problem of knowledge-based fault
diagnosis. The third part (Section 8) covers a specific fault diagnosis
example for railway track circuits.

2. Classification of uncertainty

According to e.g. Zadeh (2008); Dubois and Prade (2001); Dubois
et al. (1996); Ferson and Ginzburg (1996) various sources of un-
certainty need to be treated differently. A distinction is made between
the following sources of uncertainty:

1. Randomness;
2. Incompleteness;
3. Imprecision;
4. Conflict.

Randomness, also called intrinsic variability, refers to the situation
that a future outcome is uncertain, but a probability distribution of the
outcome is available, e.g. throwing a known fair die. Incompleteness
means that an outcome (or probability distribution) is defined, but the
information available is not sufficient to identify this outcome (or
probability distribution). For example, the evidence that the winner of
a competition is a male is only sufficient to identify the winner in the
case that there is only one male candidate winner. Otherwise, this
evidence only allows to exclude candidate female winners. Imprecision
refers to the situation that the outcome is known, but with finite
precision. For example, we know that the current outside temperature
is between 25.5 and 26.5 degrees Celsius. Finally, uncertainty can arise
due to (partially) conflicting information. For example, two experts
give a different answer to a particular question.

For reasoning purposes, uncertainty is often classified into the
following two classes (Kiureghian and Ditlevsen, 2009; Billinton and
Huang, 2008):

1. Aleatory uncertainty;
2. Epistemic uncertainty

.Aleatory uncertainty, also called statistical uncertainty, represents
intrinsic variability – i.e. the differences that are observed each time
the same experiment is repeated. Epistemic uncertainty, also called
systematic uncertainty, arises due to a lack of knowledge. This is the
uncertainty about things that we could in principle know, but in
practice we do not know. The two are often distinguished using the
fact that epistemic uncertainty can be reduced by gathering more
knowledge or more data, whereas aleatory uncertainty cannot be
reduced (Kiureghian and Ditlevsen, 2009; Ferson and Ginzburg,
1996). To illustrate this, consider the example of throwing a die.
When we throw a die of which we know the underlying model, each
time we get a different outcome, but throwing it more often will not
provide information to reduce uncertainty about the outcome of a
future throw. So, the uncertainty referred to is of the aleatory type. In
contrast, when we throw an unknown die and we want to construct a
probabilistic model of the outcome of a throw, then the more data we
gather, the less uncertainty we have in our model. Here, the uncertainty
referred to is of the epistemic type. Ideally, we would like to eliminate
all epistemic uncertainty, so that only aleatory uncertainty remains. In
practice, which part of the uncertainty actually can be reduced depends
on the particular problem, practical constraints, and the assumptions
adopted (Kiureghian and Ditlevsen, 2009).

Considering the different uncertainty sources: both imprecision,
incompleteness, and conflict refer to a lack of knowledge and they can
be regarded as epistemic uncertainty, whereas randomness can be
regarded as aleatory uncertainty.

3. Methods for reasoning under uncertainty–an overview

For completeness and to make a link between the different
uncertainty sources and the different reasoning frameworks, in this
section, we briefly introduce four common frameworks for reasoning
under uncertainty, namely the Bayesian framework, the Dempster-
Shafer framework, possibility theory, and fuzzy logic. Later on in
Section 4, we motivate our choice to focus on Bayesian and Dempster-
Shafer reasoning in this paper. Extensive discussions of the frame-
works compared in this work, i.e. Bayesian and Dempster-Shafer
reasoning, can be found in Appendix A and Appendix B respectively.
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