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A B S T R A C T

In this paper, an improved greedy randomized adaptive search procedure (GRASP) with a multi-level
evolutionary local search (mELS) paradigm is proposed to solve the Flexible Job-shop Problem (FJSP). The
FJSP is a generalisation of the well-known Job-Shop Problem with the specificity of allowing an operation to be
processed by any machine from a given set. The GRASP metaheuristic is used for diversification and the mELS
is used for intensification. Four different neighbourhood structures are formalised. A procedure for fast
estimation of the neighbourhood quality is also proposed to accelerate local search phases. The metaheuristic
has been tested on several datasets from the literature. The experimental results demonstrate that the proposed
GRASP-mELS has achieved significant improvements for solving FJSP from the viewpoint of both quality of
solutions and computation time. A comparison among the proposed GRASP-mELS and other state-of-the-art
algorithms is also provided in order to show the effectiveness and efficiency of the proposed metaheuristic.

1. Introduction

Flexible job shop scheduling problem (FJSP) is an extension of the
classical Job-shop scheduling problem (JSP) (see for instance some
recent papers (Wang and Duan, 2014; Peng et al., 2015; Ku and Beck,
2016)). The FJSP, which takes into account routing flexibility, can be
found in many applications in the modern manufacturing system. The
specificity of FJSP is that operations related to a given job should be
processed by a machine selected in a set of available ones. Considering
the assignment problem resulting from this selection and the common
scheduling problem relevant to the JSP, the FJSP is at least as complex
as the JSP, which is known to be strongly NP-hard (Garey et al., 1976).
Hence, solving such a problem advocates the use of metaheuristics in
order to find valuable results, even though they are not optimal in a
rather short computation time.

In this paper, an improved Greedy Randomized Adaptive Search
Procedure (GRASP) is presented. Introduced by Feo et al. (1994),
GRASP is a multi-start local search metaheuristic where each initial
solution is constructed using a greedy randomised heuristic. The
specificity of the proposed metaheuristic is to hybridise the GRASP
with a multi-level Evolutionary Local Search (mELS) metaheuristic
which extends the ELS procedure of Wolf and Merz (2007). Therefore,

in this paper, a metaheuristic algorithm called GRASP-mELS is
proposed. This metaheuristic has very effective searching ability and
can balance the intensification and diversification very well by using
four different neighbourhood structures during the search process.
Experiments show that the proposed algorithm is able to return good
solutions on a large number of instances found in the literature. The
metaheuristic approach proposed in this paper differs from the FJSP
literature according to the following points:

• An efficient construction heuristic, which generates good starting
solutions.

• A local search based on critical path analysis, which encompasses
both machine changes and operation permutations, is designed.
This local search makes use of a procedure for fast estimation of the
neighbours’ quality.

• Definition of new neighbourhoods integrated in a highly randomised
neighbourhood structure, where several permutations or machine
changes are made to generate a neighbour of a solution.

• An improved intensification scheme, the multi-level ELS, embedded
in a GRASP metaheuristic.

The paper is organised as follows: in the second section, the
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formulation of the Flexible Job-shop problem is introduced. Some
related works, which motivated this study, are given in the third
section. The fourth section refers to the metaheuristic and to the
integrated procedures such as neighbourhood structures and the local
search. Experiment results on four well known sets of problems taken
from the literature are then presented and compared to the state of the
art approaches. Finally, a conclusion in the sixth section of this paper
summarises key points and future research.

2. Problem definition

2.1. Problem settings

The FJSP problem has been first introduced by Brucker and Schlie
(1990). It is formally formulated as follows: a set J of n jobs, J={J1, …,
Jn} must be scheduled on a set M of m machines, M={M1, …, Mm}.
Each job Ji consists in a number of ni operations Oi,l, …, Oi n, i

, which
have to be processed in this order. An operation Oi,a is allowed to be
executed in any machine of a given setMi,a ⊆M. The processing time of
an operation Oi,a on a machine Mv ∈ Mi,a is noted pO v,i a,

. Furthermore,

each operation can be assigned to only one machine. Note that several
operations of a same job could be assigned to the same machine.
Considering that there is an assignment and a schedule for all the
operations, the starting date of an operation is noted sOi a,

and its ending
date is noted cOi a,

. The objective is to minimise the total completion
time, also called makespan and noted Cmax, of all the operations. This
criterion is given as follows: C = maxmax i r a n1≤ ≤ ,1≤ ≤ i

(cOi a,
). Several as-

sumptions are made for the classical problem, involving availability of
all machines and release dates of all jobs at time 0.

2.2. Graph modelling

The classical representation of job scheduling problems is usually
based on the disjunctive graph model presented by Roy and Sussmann
(1964). It is possible to extend this representation to FJSP as shown by
Dauzère-Pérès and Paulli (1997). Using the disjunctive graph model,
any FJSP instance can be represented by a disjunctive graph
G=(V,A,E), where V represents the set of nodes, A the set of conjunctive
(oriented) arcs and E the set of pairs of disjunctive (non-oriented) arcs.
The nodes are associated with operations Oi,a. There are also two
particular nodes to represent the start and the end of the schedule: (i) a
source node, denoted 0 connected to the first operation of each job and
(ii) a sink node, denoted *, linked with the last operation of each job.
The conjunctive arcs are used to represent the precedence constraints
of the different operations of the jobs and connect each pair of
consecutive operations of the same job. Each pair of disjunctive arcs
connects two operations, belonging to different jobs, which may be

processed on the same machine. A solution corresponds to an acyclic
subgraph that encompasses all conjunctive arcs and that contains at
most one disjunctive arc for each pair of disjunctive operations. An
optimal solution corresponds to the feasible subgraph with the minimal
makespan Cmax.

A solution can be noted S(α,π). In S(α,π), α represents a feasible
assignment of each operation Oi,a to a machine Mv ∈ M(Oi,a). (v =
α(Oi,a)). A feasible assignment is a vector where each operation is
assigned to one and only one machine. In S(α,π), π is a schedule of the
operations, respecting job sequences, on all the machines in M. A
solution Graph could be noted G(α,π)=(V,A,E(α,π)) with E(α,π) being
the set of disjunctive arcs representing the processing orders on
machines. The makespan of S(α,π) is the cost of any critical path in
G(α,π). In the following, the notation B indicates a machine-block
which is a set of consecutive operations needing the same machine in a
critical path of G(α,π), following the definition of (Grabowski et al.,
1986). Fig. 1 represents a solution for a problem with 4 jobs and 5
machines. Operations O2,2, O3,2 and O4,2 form a machine-block since
they are proceeded by the same machine M5. Note that O4,3 is also
processed on machine M5 but does not belong to the machine-block
because of precedence constraints and therefore it is impossible to
permute order of operations O4,2 and O4,3.

3. Related works

Two main approaches have been used in the research done so far
concerning FJSP: (i) hierarchical solving, which consists in finding the
best schedules while considering that assignments of machines are
fixed (Brandimarte, 1993); or (ii) considering simultaneously the
scheduling and assignment problems by using effective neighbour-
hoods (Mastrolilli and Gambardella, 2000). Actually, most of works are

Nomenclature

n Number of jobs to schedule
m Number of machines
J Set of jobs to schedule, J={J1, …, Jr}
M The set of all machines, M={M1, …, Mm}
i,j,k,l Indices for jobs
a,b,c,d Indices for job operations
u,v,v’,w,w’ Indices for machines
Mi,a The set of available machines for operation Oi,a

ni Number of operations of job Ji
Oi,a ath operation of job Ji
pO v,i a,

Processing time of operation Oi,a on machine v

sOi a,
Starting date of operation Oi,a

cOi a,
Ending date of operation Oi,a

Cmax Total completion time of all operations

Cmax
e Estimated makespan

α Assignment of all operations
π Schedule of all operations
ρ Critical path of G(α,π)
S(α,π) Solution associated to α and π
G(α,π) Graph associated to a solution
E(α,π) Set of disjunctive arcs representing the processing orders

on machines
Nn N,π π ρ

1
− Neighbourhood concerning schedules. n represents the

number of times the neighbourhood is applied. ρ means
the neighbourhood is applied on the critical path.

Nn Nα α ρ
1

− Neighbourhood concerning assignments
B, B’, B’’ Critical blocks (consecutive operations in a critical path,

assigned to the same machine)
SMOi a,

Operation succeeding Oi,a in the assigned machine
PMOi a,

Operation preceding Oi,a in the assigned machine

Fig. 1. A schedule of a problem with 4 jobs and 5 machines represented by a solution
graph. Bold arcs show a critical path whose length, i.e.: the makespan, is 37.
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