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In this study, an interval-fuzzy chance-constrained programming (IFCCP) method is developed for reflecting
multiple uncertainties expressed as interval-fuzzy-random (integration of interval values, fuzzy sets, and
probability distributions). IFCCP has advantages in uncertainty reflection and policy analysis as well as avoiding
complicated intermediate models with high computational efficiency. The developed IFCCP method is applied
for planning a regional-scale electric power system (EPS) with consideration of peak-electricity demand issue.
Results reveal that different peak demands in different seasons lead to changed electricity-generation pattern,
pollutant emission and system cost. IFCCP is more reliable for the risk-aversive planners in handling high-
variability conditions by considering peak-electricity demand. Results also disclose that fossil-fuels consump-
tion should be cut down in future (i.e. the energy-supply structure would tend to the transition from fossil-
dominated into renewable-energy dominated) in order to meet the increased power demand and mitigate the
pollutant emissions. Results can help decision makers improve energy supply patterns, facilitate dynamic
analysis for capacity expansion, as well as coordinate conflict interactions among system cost, pollutant

mitigation and energy-supply security.

1. Introduction

As the foundation for sustaining social and economic development,
electricity plays an important role in a variety of human activities
throughout the world. Over the past decades, electricity demand and
supply have been steadily increasing in response to life standard
improvement, economic development and population growth (Han
et al., 2015; Kato et al., 2016). The rapid increase of electricity demand
and the integration of renewable energy have imposed great stress on
the power grid, especially in maintaining grid power balance (IEA,
2014). The power supply and demand of a grid must always balance
and such real time balance is a critical system requirement. Any power
imbalance/mismatch will affect the reliability and quality of power
supply (e.g. power outages, voltage fluctuations), which will cause
severe consequences such as widespread blackouts and increased
electricity expenses for end-users (OECD, 2005). Therefore, how to
solve the power balance issues becomes an utmost attention for
decision makers of EPS planning.

Lots of efforts were adopted for planning EPS in response to power
balance issues such as power reserve, electricity-generation expansion,
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renewable energy integration, electricity purchase, electricity prices,
load shedding and load shifting control as well as electricity transmis-
sion infrastructure upgradation (Chen and Li, 2011; Yoon et al., 2014;
Rejc and Cepin, 2014; Gao and Sun, 2016). For example, Fernandez
et al. (2013) proposed a novel “Just-for-Peak” buffer inventory
methodology to reduce the electricity consumption without compro-
mising system throughput during peak periods, in which 20.1% power
demand reduction during peak periods could be achieved. Werminski
et al. (2017) used the decentralized active demand response automa-
tion for reducing the peak power in the Polish EPS, where about 4% of
typically peak power value was reduced. Generally, the above measures
were mainly based on demand response controls and they were merely
focused on maximizing the benefits of power grid in terms of load
profile alterations. The load profiles of end-users sectors were changed
into an uncoordinated way and leading to an aggregated load profile,
which would greatly impact the normal operation of each sector.
Through such uncoordinated control, the overall peak demand of the
aggregated load profile could not be effectively and efficiently reduced
in a desired way of a grid. Renewable energy integration and electricity
purchase are useful tools for satisfying peak electricity demand with an
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environment-friendly way, which can effectively reduce the pollutant
emissions and can improve the reliability of power demand-supply (Yu
et al., 2016).

2. Related work

Over the past decades, many studies were effective for planning EPS
by considering peak electricity demand with an environment-friendly
way in terms of linear programming (LP), integer programming (IP),
dynamic programming (DP) and artificial intelligence (Silva et al.,
2012; Moazzami et al., 2013; Cocana-Fernidndez et al., 2016;
Loganthurai et al., 2016; Dababneh et al., 2016; Pham et al., 2016).
For instance, Dudhani et al. (2006) used a linear programming
algorithm for peak load demand management in India, in which
renewable energy sources were considered to meet the peak load
demand at the regional level of India. Burke (2014) used a dynamic
programming method to meet the peak demand conditions in summer
afternoon, which compares the capital cost of critical peak availability
from gas turbines to the capital cost of critical peak availability from
distributed solar in the Australian National Electricity Market.
However, these linear programming methods were not usually suffi-
cient to model the complexities and nonlinearities of EPS. In addition,
these studies narrowed themselves in dealing with peak demand
management problems for individual power generation sector (e.g.
solar and geothermal), which had difficulties in reflecting the compli-
cated interactions among various power supply technologies. For entire
EPS, in fact, the unique energy and environmental and economic
features of individual technology could influence each other, which
made the whole EPS become more complicated.

Besides, in EPS planning problems, uncertainties can exist in both
objective function (e.g., fluctuating electricity price, imprecise fuel cost)
and constraints (e.g., peak-electricity demand and pollutant emission)
(Zhou et al., 2013). These uncertainties can be brought from not only
parameter measurement and its evaluation, but also the cause by all the
aspects of energy production, processing, conversion, transportation
and utilization. A number of inexact optimization methods were
proposed for dealing with such uncertainties and complexities in
EPS, such as fuzzy programming (FP), interval-parameter program-
ming (IPP) and chance-constrained programming (CCP) (Mohammad
et al., 2013; Elyasi and Salmsi, 2013; Azadeh et al., 2014; Lin and
Chen, 2016). In general, although CCP can deal with decision problems
whose coefficients (input data) are not certainly known but could be
represented as chances or probabilities, the increased data require-
ments for specifying the parameters’ probability distributions may
affect their practical applicability (Li and Huang, 2009; Kamjoo et al.,
2016). Fuzzy programming methods are effective for dealing with
decision problems under fuzzy goal and constraints and handling
ambiguous coefficients in the objective function and constraints, where
uncertainties are handled in a direct way without a large number of
realizations, nevertheless, the main limitations of the FP methods
remain in their difficulties in tackling uncertainties expressed as
probabilistic distributions (Pishvaee and Khalaf, 2016; Razmi et al.,
2016). IPP can handle uncertain parameters that are expressed as
intervals with known lower and upper bounds, but unknown member-
ship or distribution functions (Huang, 1996). In fact, in the real-world
EPS planning problems, uncertainties can further exist in multiple
levels: vagueness and/or impreciseness in the outcomes of a random
sample, and randomness and/or fuzziness in the lower and upper
bounds of an interval (Li et al., 2010; Yu et al., 2017). These
complexities have placed many EPS problems beyond the conventional
optimization methods. Therefore, one potential approach for better
reflecting multiple uncertainties is to develop an interval-fuzzy chance-
constrained programming (IFCCP) method through integrating tech-
niques of IPP, CCP and FP into a general framework.

The objective of this study is to develop such an IFCCP method and
apply it to planning a regional-scale EPS with consideration of peak-
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electricity demand issue. IFCCP can deal with multiple uncertainties
expressed as interval-fuzzy-random (integration of intervals, fuzzy sets
and probability distributions). The left-hand-side coefficients presented
as fuzzy intervals and the right-hand-side coefficients existed in
interval-fuzzy-random form can be handled. Besides, IFCCP enhances
the traditional fuzzy mathematical programming by choosing different
fuzzy dominance indices of constraints, avoiding complicated inter-
mediate models with high computational efficiency. The IFCCP method
is applied to planning EPS under uncertainty. Results obtained will be
helpful for supporting (a) adjustment of the existing demand and
supply patterns of energy resources, (b) facilitation of dynamic analysis
for decisions of capacity expansion and/or development planning, and
(c) coordination of the conflict interactions among economic cost,
system efficiency, pollutant mitigation and energy-supply security.

3. Methodology
3.1. Interval chance-constrained programming

Chance-constrained programming (CCP) is effective for handling
decision problems whose coefficients (input data) are not certainly
known but could be represented as chances or probabilities (Simic,
2016). A general stochastic linear programming problem can be
formulated as follows:

Min f= C(®)X (1a)
Subject to:

A(MX < B(®) (1b)

520, x€eX, j=12,..n (1c)

where X is a vector of decision variables, and A(z), B(¢), and C(¢) are
sets with random element defined on a probability space T, t € T. To
solve model (1), an equivalent deterministic model can be defined. This
can be realized by using a CCP approach, which consists of fixing a
certain level of probability p, € [0, 1] for each constraint i and imposing
the condition that the constraint is satisfied with at least a probability
of 1-p,. The set of feasible solutions is thus restricted by the following
constraints (Charnes et al., 1971; Infanger and Morton, 1996):

Pri{A; X< b))} >21-p, Ai€A, b@®)eB®), i=1,2,...m

@

Constraint (2) is generally nonlinear, and the set of feasible
constraints is convex only for some particular cases, one of which is
when the left-hand-side coefficients (a;) are deterministic, and the
right-hand-side constraints (b;) are random. This leads to an equivalent
linear constraint that has the same size and structure as a deterministic
term, and the only required information about the uncertainty is the p,
level for the unconditional distribution of (4;). Thus, constraint (2)
becomes linear (Charnes and Cooper, 1983; Tan et al., 2015):

AX < bW, Vi 3)

where b;(1)?) = F~!(p,), given the cumulative distribution function of
b;(i.e.,F (b;)), and the probability of violating constraint i (i.e., p;). IPP
is effective for handling uncertainties in objective function and
constraints, since interval numbers are acceptable as its uncertain
inputs (Li et al., 2008; Nematian, 2016). Thus, an interval chance-
constrained programming (ICCP) model can be formulated as follows:

Min f* = CX* (4a)
Subject to:

AFXE<BOW, A*e€eAr, i=1,2,...m (4b)

x_,i >0, x_,.t ext, j=12..n (4¢)

where B(t)? = {b;)Pli =1, 2,...,m}.
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