
Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Immunological algorithms paradigm for construction of Boolean functions
with good cryptographic properties

Stjepan Piceka,⁎, Dominik Sisejkovicb, Domagoj Jakobovicb

a KU Leuven, ESAT/COSIC and iMinds, Kasteelpark Arenberg 10, bus 2452, B-3001 Leuven-Heverlee, Belgium
b Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

A R T I C L E I N F O

Keywords:
Artificial immune systems
Evolutionary algorithms
Boolean functions
Cryptography
Comparison
Efficiency analysis

A B S T R A C T

In this paper we investigate the efficiency of two immunological algorithms (CLONALG and opt-IA) in the
evolution of Boolean functions suitable for use in cryptography. Although in its nature a combinatorial problem,
we experiment with two representations of solutions, namely, the bitstring and the floating point based
representation. The immunological algorithms are compared with two commonly used evolutionary algorithms
– genetic algorithm and evolution strategy. To thoroughly investigate these algorithms and representations, we
use four different fitness functions that differ in the number of parameters and difficulty. Our results indicate
that for smaller dimensions immunological algorithms behave comparable with evolutionary algorithms, while
for the larger dimensions their performance is somewhat worse. When considering only immunological
algorithms, opt-IA outperforms CLONALG in most of the experiments. The difference in the representation for
those algorithms is also clear where floating point works better with smaller problem sizes and bitstring
representation works better for larger Boolean functions.

1. Introduction

Cryptography, in its core, is a science (and art) of secret writing
with the goal of hiding the meaning of a message (Paar and Pelzl,
2010). As such, it plays a tremendous role in people's everyday life. To
ensure the secrecy of information (but also authentication and data
integrity among other relevant goals (Katz and Lindell, 2015)) we rely
on strong, well-designed cryptographic algorithms – commonly re-
ffered as ciphers.

When the ciphers use keys, we can divide them on the basis whether
all communicating parties use the same key or not (Knudsen and
Robshaw, 2011). If all entities use the same key for encryption and
decryption operations then we talk about symmetric-key crypto-
graphy or secret-key cryptography. Assume that two parties
(commonly denoted as Alice and Bob) want to exchange some message
and they want it to remain secret, i.e. that an attacker (commonly
denoted as Eve) cannot read it. Alice could encrypt her message and
send it over an insecure (public) channel to Bob. If Bob has the same
key as Alice, he can then decrypt and read the message. Eve cannot
decrypt the message if she does not know the key. Therefore, if Alice
and Bob want to keep their communication private they need either to
keep the key secret or the algorithm secret. However, in 19th century
Kerchoff stated that a cryptosystem should be secure even if everything
about the system, except the key, is publicly known (Kerckhoffs, 1883).

A classical division of symmetric-key cryptography is on block
ciphers and stream ciphers (Knudsen and Robshaw, 2011). A
common trait for all those ciphers is that they are designed in
accordance with a number of cryptographic criteria they need to fulfill.
Those criteria enable ciphers to resist various cryptanalysis attacks
where to resist linear (Matsui and Yamagishi, 1993) cryptanalysis, we
require that the cipher possess enough nonlinearity.

In both block and stream ciphers one common source of non-
linearity (although not the only one) are Boolean functions. In block
ciphers, one usually uses vectorial Boolean functions or Substitution
boxes (S-boxes) (Knudsen and Robshaw, 2011) where input and output
dimensions are comparable (e.g. the same as in the AES cipher
(Daemen and Rijmen, 2002) or similar like in the DES cipher (FIPS,
1999)). On the other hand, in stream ciphers more common are either
Boolean functions or S-boxes where output dimension is strictly
smaller than the input dimension (Carlet, 2010).

To build such nonlinear elements, one has three main options on
his disposal: algebraic constructions, random search, and heuristics
(Picek et al., 2014). Heuristic techniques are well visited with works
spanning from simulated annealing (Clark and Jacob, 2000) and
evolutionary algorithms (Picek et al., 2015b), to particle swarm
optimization (Mariot and Leporati, 2015). All those methods have in
common that they are highly successful and give results comparable to
algebraic constructions.

http://dx.doi.org/10.1016/j.engappai.2016.11.002
Received 15 January 2016; Received in revised form 17 October 2016; Accepted 3 November 2016

⁎ Corresponding author.

Engineering Applications of Artificial Intelligence xx (xxxx) xxxx–xxxx

0952-1976/ © 2016 Elsevier Ltd. All rights reserved.
Available online xxxx

Please cite this article as: Picek, S., Engineering Applications of Artificial Intelligence (2016),
http://dx.doi.org/10.1016/j.engappai.2016.11.002

http://www.sciencedirect.com/science/journal/09521976
http://www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.11.002
http://dx.doi.org/10.1016/j.engappai.2016.11.002
http://dx.doi.org/10.1016/j.engappai.2016.11.002

In the rest of this paper, we concentrate only on Boolean functions,
i.e. where the output dimension of a function equals one. As the
construction principle, we use heuristics, more precisely immunologi-
cal inspired computation where we experiment with the clonal selec-
tion algorithm and the optimization immune algorithm. Both algo-
rithms are a special class of immune algorithms and are inspired by the
clonal selection principle of the human immune system (Burnet, 1959;
Castro and Timmis, 2002). From the evolutionary algorithms para-
digm, we experiment with genetic algorithms (GAs) and evolution
strategies (ES). We note that this work presents the first step when
investigating the effectiveness of immunological algorithms for the
construction of Boolean functions with good cryptographic properties.
By doing so, we explore two different representations of solutions,
namely the bitstring and the floating point representation and compare
the aforesaid algorithms. As a benchmark suite, we use four fitness
functions and a number of Boolean function sizes.

1.1. Motivation and contributions

Historically, Boolean functions were mostly used in combination
with Linear Feedback Shift Registers (LFSRs) in two models – the filter
generator and the combiner generator. In a filter generator, the output
is obtained by a nonlinear combination of a number of positions in one
longer LFSR while in a combiner generator, several LFSRs are used in
parallel and their output is the input for a Boolean function. Such
Boolean functions need to fulfill a number of properties: to be
balanced, with high nonlinearity, large algebraic degree, large algebraic
immunity, large fast algebraic immunity, and large correlation im-
munity (in the case of combiner generators) (Carlet, 2010). However,
obtaining large enough Boolean functions with good values of the
aforesaid properties is not a trivial task. First, to illustrate the size of
the problem, we give the corresponding search space sizes in Table 1.

However, in our experiments we concentrate only on two properties
out of those listed above – balancedness and nonlinearity. By doing so,
we are able to concentrate more on the comparison between different
heuristic techniques as well as with related work. Therefore, although
talking about constructing Boolean functions with good cryptographic
properties, we emphasize that here we consider these problems as
benchmarks where the end goal are Boolean functions possessing
certain properties. Such obtained functions could, but will not in
general, have all necessary properties of a sufficient quality.

In this paper, we give two main contributions and a number of
smaller ones. The first contribution represents an experimental in-
vestigation on the efficiency of immunological algorithms when design-
ing Boolean functions with good cryptographic properties. Although a
simple application of a new algorithm to a well-researched problem
does not necessarily constitute a significant contribution, we believe
here to be relevant since the whole area of applying immunological
algorithms to cryptography is a new one. Moreover, by switching the
paradigm from evolutionary algorithms to immunological algorithms
we should be able to give an insight whether further improvements are
possible by simply changing the algorithms. Indeed, by doing so, we try
to give knowledge that is not domain specific and tells us whether for
performance increase is more important the choice of algorithm,
representation, or fitness function. The second contribution is that
we are the first, as far as we know, to experiment with the floating point
representation of solutions to evolve cryptographic Boolean functions.
Finally, in this work we investigate larger sizes of Boolean functions
than can usually be found in the literature, where we go up to Boolean

functions with 16 variables. We note that by doing so, we experiment
with sizes that have practical importance since 13 inputs is considered
the minimal size of a Boolean function to be useful in cryptography
(Carlet, 2010). To strengthen our experimental results, we compare
two immunological algorithms with two well-researched evolutionary
algorithms for both bitstring and floating point representation.
Naturally, in order to examine the relevance of algorithms' parameters,
we conduct a detailed tuning phase. Finally, all experiments are
conducted on four fitness functions where two are well-known ones
from the literature, and two are modifications that provide more
gradient in the search process.

1.2. Outline of the paper

This paper is divided into two main parts: the description of our
experimental setup in Section 5, and the obtained results in Section 6.
However, first we start with a short introduction to Boolean functions,
their properties, representations, and notation we use in Section 2.
Then, after we introduced the readers with basic notions and proper-
ties, we give a selection or relevant works in Section 3. Next, Section 4
introduces fitness functions we use in our experiments. Detailed
explanation about the representation perspectives for heuristic algo-
rithms is presented in Section 5.1. The parameter tuning phase is
discussed in Section 6.1 and the results for the first and second fitness
functions in Sections 6.2 and 6.3, respectively. In Section 6.4, we give a
short discussion about the efficiency of the algorithms used as well as
some potential future research directions. Finally, we conclude in
Section 7.

2. Boolean functions properties and representations

Let n m, ∈ . We denote the set of all n-tuples of the elements in the
field 2 as n

2 , where 2 is the Galois field with two elements. The set n
2

represents all binary vectors of length n and it can be viewed as a 2 –

vectorspace (Carlet, 2010). The inner product of vectors a→ and b
→

is

denoted as a b→·
→

and it equals a b a b→·
→

= ⊕i
n

i i=1 . Here, “⊕” represents
addition modulo two. The Hamming weight (HW) of a vector a→, where
a→ ∈ n

2 , is the number of non-zero positions in the vector. An n m(,) –
function is any mapping F from n

2 to m
2 where Boolean functions

represent m=1 case.

2.1. Boolean function representations

A Boolean function f on n
2 can be uniquely represented by a truth

table (TT), which is a vector f f((0
→

),…, (1
→

)) that contains the function
values of f, ordered lexicographically (Carlet, 2010).

The second unique representation of a Boolean function is the
Walsh–Hadamard transformWf that measures the correlation between
f x(→) and all linear functions a x→·→ (Carlet, 2010; Forrié, 1990). The
Walsh–Hadamard transform of a Boolean function f equals:

∑W a(→) = (−1) .f
x

f x a x

→∈

(→) ⊕→·→

n
2 (1)

There exist other unique representations of Boolean functions like
the algebraic normal form or numerical normal form (Carlet, 2010).
However, since we do not work with those representations nor we need
properties that are usually derived from those representations, we omit
the details and refer interested readers to Carlet (2010).

2.2. Boolean function properties and bounds

A Boolean function f is balanced if the Walsh-Hadamard spectrum

of a vector 0
→

equals zero (Preneel et al., 1991):

W (0
→

) = 0.f (2)

Table 1
The search space size for various input size n.

n 6 8 10 12 14 16
264 2256 21 024 24 096 216 384 265 536

S. Picek et al. Engineering Applications of Artificial Intelligence xx (xxxx) xxxx–xxxx

2

Download English Version:

https://daneshyari.com/en/article/4942754

Download Persian Version:

https://daneshyari.com/article/4942754

Daneshyari.com

https://daneshyari.com/en/article/4942754
https://daneshyari.com/article/4942754
https://daneshyari.com

