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a b s t r a c t

This paper introduces PAREDA (ParetoDesignAutomation), a composite automated methodology for the
optimization of analog circuits and solar cell devices. The PAREDA framework combines randomized al-
gorithms, domain and constraints sensitivity analysis, epsilon-dominance and global robustness analysis
in order to perform simulation-based, multi-scenario and multi-objective optimization. PAREDA is eval-
uated on the problems of designing a three-stage operational amplifier, a yield-aware optimization of a
folded-cascode operational amplifier (requiring multiple operating conditions) and a model for selective
emitter solar cells.

Comparisons with a selection of state-of-the-art techniques (such as NSGA-II and YdIRCO) highlight
the effectiveness of PAREDA both in terms of Pareto optimality of the solutions found and time-to-con-
verge. The solutions obtained by PAREDA dominate those of comparative techniques, in particular, the
proposed technique shows a significant average performance improvement (ranging from 35% to 49%)
with respect to such techniques. Moreover, the CPU time required by PAREDA to converge is smaller of at
least 75% if compared with the other methodologies here analyzed (e.g. significantly improved designs
for folded-cascode operational amplifier are found in just 320 s). Finally, the PAREDA algorithm can also
benefit from parallelization, which leads to a significant speed-up with respect to the nonparallel version.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Analog circuits find application in a large variety of different
fields (Roychowdhury et al., 2007). The technological advance-
ment has led to development of highly complex integrated circuits
(IC) in order to meet increasingly demanding design requirements.
In addition, the short product life and the tight time-to-market
constraints, that are characteristics of the electronic industry, in-
crease the difficulty of designing circuits (Gielen and Rutenbar,
2000). A suitable approach to tackle such strict requirements
might be through a combination of design automation meth-
odologies (Anile et al., 2005).

Another major issue of the development of circuits and solar
cells concerns the scaling down of their designs. For instance, if
the thickness of the oxide layer reduces to a few atoms, the
combination of quantum effect, random dopant fluctuations and
manufacturing imperfections might cause significant differences

between different devices and, more generally, performance de-
gradation. Hence, robust designs of the model, with additional
attention to the physical parameters, are crucial in order to cope
with the uncertainty that occurs at small-scales (Nuzzo and San-
giovanni-Vincentelli, 2011). Analogous considerations can be made
for solar cell devices, in which even very small fluctuations of the
doping levels of the different layers can lead to significant de-
gradation of the cell efficiency. Moreover, design problems can also
be characterized by large disjoint design spaces, due to an overly
abundant number of design variables, and/or non-linear physical
constraints on the model parameters and outputs (Ciccazzo et al.,
2008a). In this context, efficient and device-independent meth-
odologies can aid the design of circuits and solar cells.

We propose a simulation-based, multi-scenario and multi-ob-
jective optimization algorithm that can afford the simultaneous
optimization of yield and performance of different types of de-
vices. The Pareto Design Automation algorithm (PAREDA) is based
on the paradigm of Immune Algorithms. It performs, in the case
here studied, notably better than several academic tools largely
employed in this field. Moreover, we extend our algorithm with
global domain-space sensitivity analysis (SA), which leads to
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considerable computational complexity reduction; epsilon-dom-
inance analysis, which allows a rigorous exploration of approxi-
mately non-dominated designs (i.e. designs satisfying a non-
dominated condition relaxed by a small ϵ > 0 value); constraints
sensitivity analysis, which gives an insight on the behavior of a
model's constraints; global robustness analysis, which we use to
evaluate a device resistance against perturbations.

Indeed, heuristics for multi-objective optimization enable ea-
sier global design space exploration and can be used to design
robust devices (Tiwary et al., 2006; Biondi et al., 2006). A vast
amount of work can be found in this field (Cutello, 2006; Ciccazzo
et al., 2008b). In Graeb et al. (2009), the authors proposed a multi-
objective optimization problem formulation operating on the
process parameters, while in Stracquadanio and Romano (2013), a
multi-objective optimization has been used for designing semi-
conductor devices. In Tiwary et al. (2006), yield-aware Pareto
fronts are generated using two stochastic algorithms and Monte
Carlo analysis. However, both methods are sequential, which can
lead to a waste of computational resources. Following this con-
sideration, the authors in Liu et al. (2010) extend the NSGA algo-
rithm to optimize simultaneously yield and device performance.
NSGA-II, whereas, is used in the MOJITO (McConaghy et al., 2007)
system for multi-topology and multi-objective design of analog
circuits, while in Conca et al. (2009) an immune-oriented ap-
proach has been used.

In Li and Stojanović (2009) the authors proposed an iterative
yield-driven robust optimization algorithm. However, it has the
drawback of being inaccurate (20% mismatch with HSPICE). In Ber-
mel et al. (2010) the authors show that heuristic global optimi-
zation of thermophotovoltaic solar cell devices can lead to sig-
nificant efficiency improvement. Also in this case (Sheng et al.,
2009), NSGA-II is adopted as the core of the heuristic approach.
Notice that each of these methodologies either does not consider
yield in the optimization phase or base the optimization on
heuristic methods, which are therefore of paramount importance
for the optimality of the designs obtained. We remark that an
heuristic approach is not the only possible alternative for multi-
objective optimization. Works in the field of multi-objective op-
timization are also focused on finding mathematical conditions,
which would allow the exact determination of a problem Pareto
fronts, rather than approximations of the latter. For example, a
rank-deficient condition on a problem-dependent Jacobian matrix
is used in Brown et al. (2013) in order to identify the problem
boundaries on the objective space, and hence the Pareto Front as a
subset of the latter.

We would like to remark that immune-system optimization
algorithms are recently receiving an ever-increasing attention on
various engineering fields that require heuristic optimization as a
step of the design process. For example, in Omkar et al. (2008) the
authors develop an artificial immune system based multi-objec-
tive optimization algorithm for the optimization of laminated
composite components design. An immunity-based hybrid evolu-
tionary algorithm for constrained and unconstrained multi-ob-
jective optimization has been proposed in Wong et al. (2009), and
it has been validated against state-of-the-art optimization algo-
rithms. Multimodal function optimization is the subject of Xu et al.
(2010), in which an artificial immune system based algorithm
proves its efficiency on various benchmark problems. Finally no-
tice that the immune system paradigm finds applications in other
research fields related to that of artificial intelligence. For what it
concern data mining, the author in Aydin et al. (2010) combines
swarm learning and the artificial immune system paradigm, in
order to develop an efficient classification algorithm. A clustering
algorithm is whereas presented in Zhang et al. (2014). The

regression problem is whereas tackled in Diao and Passino (2002),
where an immunity-based learning approach is used to adjust the
form and the parameters of specific spatially localized models.

The specific contributions of this paper are (i) we formulate the
yield-aware optimization of analog circuit as a multi-scenario and
multi-objective problem; (ii) we propose an immune optimization
algorithm which is able to tackle the latter class of problems; (iii)
we validate our algorithm against the problem of designing analog
circuits and solar cell devices; (iv) we enhance our algorithm with
sensitivity, epsilon-dominance and robustness analysis.

2. The design space exploration by PareDA

In this section, we introduce PAREDA, a new methodology for
designing electronic circuits and solar cells. The proposed method
relies on a stochastic black-box optimization algorithm inspired by
the clonal selection principle of the immune system of vertebrates.
Given a large space of solutions, PAREDA provides an in-depth
search of its promising zones (Pavone and Narzisi, 2012). PAREDA is
composed of four different models, (i) sensitivity analysis, which
evaluates the importance of each parameter with respect to the
problem considered, this information can be used to reduce the
size of the domain space considered; (ii) optimization, which is
the core method of PAREDA, which can be both single-objective and
multi-objective; (iii) identifiability analysis, through which we
study the functional relationship between the model parameters;
(iv) robustness analysis, a perturbation-based index that evaluates
how robust a given design is against random variations of its de-
sign parameters.

The optimization algorithm of PAREDA is based on an abstrac-
tion of the immune system: the analyzed problem corresponds to
the antigen, namely the threat to neutralize, while candidate so-
lutions correspond to B-cells, namely the cells responsible for the
adaptivity of the immune system. The affinity between the antigen
and a B-cell depends on the objective function(s) of the problem.
Each B-cell is a vector of k real values (k is the dimension of design
space). Each candidate solution has an age τ, which is the number
of iterations since the last successful mutation (initially τ = 0).

At the onset of the algorithm, an initial population ( )P 0 of car-
dinality d is randomly generated. Then the population of candidate
solutions is evolved by applying iteratively a set of operators. In
particular, each iteration consists of a cloning phase, a mutation
phase and a selection phase. The pseudo-code of PAREDA is sum-
marized in Algorithm 1. In the cloning phase, each member of the
population is cloned dup times (where dup is a user-defined
parameter), thus generating a population Pclo. Each cloned candi-
date solution gets the same age of its “parent”, whereas the age of
the latter is increased by one. Mutations are then applied to the
new population, with the intent of generating better (in terms of
affinity) B-cells. Firstly, the hyper-mutation operator (Cutello et al.,
2006) mutates a randomly chosen variable xi of a given candidate
solution using a self-adaptive Gaussian mutation (Beyer and
Schwefel, 2002). Successively, the hyper-macromutation applies a
convex perturbation to a given B-cell, by setting

γ γ= ( − ) +x x x1i
new

i k, where xi and xk are randomly chosen com-
ponents of the candidate solutions such that ≠i k and γ is uni-
formly distributed in [ ]0, 1 . The mutation rates of these operators
are controlled by the parameter α: for the hyper-mutation op-
erator, we define α = ρ−e f ; while for the hyper-macromutation we
use α =

β
−e f1 , where f is affinity of the B-Cell, normalized in the

interval [ ]0, 1 . The hyper-mutation operator acts on the population
Pclo thus producing a new population Phyp, which is in turn hyper-
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