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A B S T R A C T

A new regulated boosting technique, rBoost, is proposed in this work for time series forecast and material
fatigue property prognosis. The rBoost employs the principle of ensemble learning, associated with base
predictors. Different from general boosting techniques that are prone to overfitting when using relatively strong
base predictors such as autoregressive model and radial basis function, the proposed rBoost technique aims to
improve error convergence and reduce the overfitting problem using the new sample weight regulator. The
effectiveness of the developed rBoost predictor is firstly demonstrated by simulation tests, and then the rBoost is
implemented for material fatigue property prognosis. Test results show that the proposed rBoost predictor is an
effective forecast tool; it can capture system dynamics effectively and track system characteristics accurately.

1. Introduction

Time series forecast is a process that extrapolates future states of a
dynamic system by analyzing its available (i.e., current and past) states.
Reliable forecast information is valuable in many real-world applica-
tions such as electric load forecasting (Elattar et al., 2010; Bashir and
EI-Hawary, 2009), financial indicator prediction (Lu, 2010; Chang and
Liu, 2008), and equipment health condition monitoring (Wang, 2008).
Fatigue induced damage is one of the most uncertain and highly
unpredictable failure mechanisms for a large variety of mechanical and
structural systems subjected to cyclic and random loads during their
service life. Fatigue life prediction of materials is an on-going and
unsolved challenge for non-destructive evaluation and structural con-
dition monitoring. Material fatigue prognosis information could be
used to estimate the material property propagation and remaining
useful life (Peng et al., 2015; Lee et al., 2015; Corbetta et al., 2015). The
classical time series forecast is mainly based on the use of analytical
tools, such as autoregressive (AR) and autoregressive-moving-average
(ARMA) models (Brockwell and Davis, 2009). However, the prediction
efficiency of these analytical model-based methods depends on the
accuracy of the formulated models. The alternative is the use of soft-
computing tools such as neural networks (NNs) (Mohammadi et al.,
2014; Khashei and Bijari, 2012) and neuro-fuzzy (NF) systems (Wang
et al., 2015; Li et al., 2013). These soft computing techniques can be
trained to recognize data characteristics in the time series. Their
performance, however, may be limited due to suboptimal system
structures and inefficient system training.

Another promising approach for system state forecasting is based
on the use of the boosting technique. It is an ensemble learning
approach that applies a series of weak learners whereby each weak
learner deals with one tweaked data property (e.g., the data distribu-
tion) (Yu et al., 2016; Gao et al., 2012). For example, an AdaBoost.RT
algorithm is presented in (Shrestha and Solomatine, 2006) to detect
incorrect predictions and update data distribution accordingly. A
gradient boosting technique is suggested in (Taieb and
Hyndman 2014) to conduct hierarchical load forecasting. Although
these boosting techniques can be used for regression problems, they
usually build the ensemble with weak base predictors such as decision
trees. Their prediction accuracy may be degraded in employing
relatively strong base predictors, such as autoregressive (AR) or radial
basis function (RBF) models in the ensemble, because strong base
predictors are prone to resulting in overfitting (Breiman, 1999).

To tackle the aforementioned overfitting problems, a novel regu-
lated boosting technique, rBoost in short, is proposed in this work for
more accurate system state forecast and material property prognosis. It
is new in the following aspects: 1) a novel weight regulator is proposed
in the proposed rBoost technique to effectively reduce the overfitting
problem; 2) the forecast convergence of the proposed rBoost technique
is analytically investigated. The effectiveness of the proposed rBoost
predictor is verified by simulations. Furthermore, the new rBoost
predictor is implemented for material fatigue prognosis.

The remainder of this paper is organized as follows: Section 2
presents the theoretical foundation of the proposed rBoost technique.
In Section 3, the effectiveness of the proposed rBoost predictor is first
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examined by simulations, and then it is implemented for material
fatigue prognosis; finally, some concluding remarks of the study are
given in Section 4.

2. The proposed rBoost technique

The motivation in rBoost technique is to incorporate more base
predictors in the ensemble, each having an appropriate weight factor;
correspondingly, the resulting ensemble predictor could outperform
each base predictor and become a stronger predictor. The development
of the rBoost technique is discussed below.

2.1. The regulated boosting in rBoost technique

Consider the training samples z(k); k=1, 2, …, Nt, where Nt is the
number of samples in the training data set. For an s-step-ahead
prediction, the training data set is re-arranged to have the input vector
x(i)=[z(i−1), z(i−2), …, z(i−r)], and the output y(i)=z(i+s−1), where
i=1, 2, …, N; N =(Nt−r−s+1), and r is the dimension of the input vector
x(i).

In the ensemble of the rBoost, the base predictor ht incorporated at
step t aims to classify the training data with distribution Lt. Given the
distribution Lt, the update of the distribution at step t+1 will be
performed by
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where pt are the predicted values at step t using the base predictor ht;
yd are the desired values; βt is the weight of the base predictor ht and
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t t t d t=1 . ηt is a new weight regulator to
improve error convergence and prevent the boosting from overfitting,
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where ζ ∈ (0, +∞) is the factor to regulate the weight update rate. The
average of root mean square error (RMSE) change rates at step t-1 and
step t-2 is
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where ϕt is the RMSE at step t, calculated by
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If Φt is large, then ηt is large, in order to speed up error convergence;
if Φt is small, then ηt is small to reduce overfitting problem. If Φt is
constant, a larger ζ will lead to a larger ηt , the error convergence
improvement becomes more significant.

By setting the initial distribution L i( ) =
N1
1 , i=1, 2, …, N, similarly,

the update of the distribution is carried out by
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The weight βt of the base predictor ht will be
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where λ L i y i p i= ∑ ( ) ( ) − ( )t i
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i

d t is the max-

imum value of y i p i( ) − ( )d t . The detailed derivation of βt will be
discussed in the Section 2.3.

The final ensemble predictor will be derived as
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is the normalized weight of base predictors. The

processing diagram of rBoost is illustrated in Fig. 1.

2.2. Derivation of the mean square error measure

Since β ≤ 0t , η < 0t ,β′ ∈ [0, 1]t , β∑ ′ = 1t
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the mean square error (MSE) of the training data can be determined by
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2.3. MSE upper bound convergence

Let u y i p i= ( ) − ( )t d t with u M∈ [0, ]t t , then λ L i u i= ∑ ( ) ( )t i
N

t t=1 . The
upper bound of Zt can be derived as
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Fig. 1. Processing diagram of rBoost.
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