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A B S T R A C T

In this study we present a novel version of the Scale Invariant Map (SIM) called Beta-SIM, developed to
facilitate the clustering and visualization of the internal structure of complex datasets effectively and efficiently.
It is based on the application of a family of learning rules derived from the Probability Density Function (PDF)
of the residual based on the beta distribution, when applied to the Scale Invariant Map. The Beta-SIM behavior
is thoroughly analyzed and successfully demonstrated over 2 artificial and 16 real datasets, comparing its
results, in terms of three performance quality measures with other well-known topology preserving models such
as Self Organizing Maps (SOM), Scale Invariant Map (SIM), Maximum Likelihood Hebbian Learning-SIM
(MLHL-SIM), Visualization Induced SOM (ViSOM), and Growing Neural Gas (GNG). Promising results were
found for Beta-SIM, particularly when dealing with highly complex datasets.

1. Introduction

Among the great variety of tools for multidimensional data visua-
lization, several of the most widely used are those belonging to the
family of the topology preserving maps (Chen et al., 2013; Fuertes
et al., 2010; Kohonen, 1998; Mohebi and Bagirov, 2016; Wu et al.,
2011). Probably the best known among these algorithms is the Self-
Organizing Map (SOM) (Chen et al., 2013; Kohonen, 1998, 2013;
Haimoudi et al., 2016). It is based on a type of unsupervised learning
called competitive learning; an adaptive process in which the units in a
neural network gradually become sensitive to different input categories
or sets of samples in a specific domain of the input space. The main
feature of the SOM algorithm is its topology preservation. When not
only the winning unit, but also its neighbors on the lattice are allowed
to learn, neighboring units gradually specialize to represent similar
inputs, and the representations become ordered on the map lattice.

Several extensions of SOM can be found in the literature such as the
Generative Topographic Mapping (GTM) (Bishop et al., 1998;
Ghassany and Bennani, 2015), which was developed by Bishop et al.
as a probabilistic version of the SOM, in order to overcome some of its
limitations, particularly the lack of an objective function. An important
application of the GTM is to allow a simpler visualization of high-
dimensional data.

Another extension of SOM is the Topographic Product of Experts
(ToPoE), and the Harmonic Topographic Map (HaToM) (Fyfe, 2005;
Jeong et al., 2015), where the topology preserving map is created from
a product of experts.

The use of ensembles with SOM (Akhand and Murase, 2012; Cho,
2000; Dietterich, 2000; Wang and Gupta, 2015) has also been studied
to increase the stability and performance of a specific algorithm. One of
the most recent developments of ensembles, in the field of topology
preserving maps, is the Weighted Voting Superposition (WeVoS)
(Baruque and Corchado, 2014). The principal idea is to obtain the
final units of the map by a weighted voting among the units in the same
position in different maps, according to a quality measure.

The Visualization Induced SOM (ViSOM) (Corchado and Baruque,
2012; Huang and Yin, 2009), is a SOM extension proposed for the
direct preservation of the local distance information on the map, along
with the topology. The ViSOM constrains the lateral contraction forces
between units and hence regularizes the inter-unit distances, so that
distances between units in the data space are in proportion to those in
the input space. The ViSOM not only takes into account the distance
between a unit’s weights from one iteration to the next, but also the
distance between that unit and the Best Matching Unit within the
whole map (BMU). This allows the ViSOM to preserve topology by
maintaining distance between neighbors of the winner unit.

Two other interesting topology preserving models are the Scale
Invariant Map (SIM) (Baruque and Corchado, 2014, 2009) and the
Maximum Likelihood Scale Invariant Map (MLHL-SIM) (Baruque and
Corchado, 2011; Corchado and Fyfe, 2002). Both are designed to
perform their best with radial datasets, due to the fact that both create
a mapping where each neuron captures a “pie slice” of the data
according to the angular distribution of the input data (see Fig. 1).
However, when SOM is trained, it approximates a Voronoi tessellation
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of the input space (Kohonen, 1998). The Scale Invariant Map is an
implementation of the negative feedback network (Fyfe, 2005) to form
a topology preserving mapping. The main difference between this
mapping and the SOM (Kohonen, 1998, 2013) is that this mapping is
scale invariant.

Finally, another widely used clustering and classification algorithm
is the Growing Neural Gas (GNG) algorithm, proposed by Fritzke
(1995), Zapater et al. 2015). It is based on the Neural Gas (NG)
algorithm previously proposed by Martinetz et al. (1993) for finding
optimal data representations based on feature vectors, which is in turn
a modification of the widely known SOM. The main characteristic of the
NG algorithm is that instead of expanding through the data input space
as a fixed grid of units (as done by the SOM algorithm), the NG
algorithm allows the neighboring relationships of its units to change,
expanding more like a gas over the data space.

The GNG method is different from the previous algorithms in that it
is an incremental algorithm, so there is no need to determine a priori
the number of nodes. Network shape and size are determined during
the training, while the SOM and NG are often trained on a fixed
network size throughout.

The GNG (Zapater et al., 2015) is a combination of Fritzke’s
Growing Cell Structures (GCS) (Fritzke, 1994) and Martinetz’s
Competitive Hebbian learning (CHL) (Martinetz, 1993). The network
topology of the GNG is generated incrementally by the CHL algorithm,
which successively inserts topological connections or edges. The main
principle of the CHL is that for each input x, it connects the two closest
centers (measured by Euclidean distance) with an edge.

This research study presents a novel and efficient technique for data
clustering called Beta-Scale Invariant Map (Beta-SIM). It is based on a
modification of a topology preserving map that can be used for scale
invariant classification (Baruque and Corchado, 2014; Corchado and
Baruque, 2012; Baruque et al., 2011; Corchado and Colin, 2002). The
main objectives of this study are:

• To study and derive a family of learning rules from Beta distribution
and apply them to the Scale Invariant Map (SIM) (Baruque and
Corchado, 2014, 2009) to improve the clustering and visualization of
internal structure of high dimensional datasets, specifically with
radial structure.

• To thoroughly study the advantages and disadvantages of the novel
Beta-SIM algorithm over 2 artificial and 16 real datasets, testing its
capabilities.

• To test the capacity of the novel proposed algorithm (Beta-SIM) to

adapt to sparse clusters or to neglect outliers through the right
combination of α and β values, depending on task to be carried out.

This paper is organized as follows: Section 2 presents in detail the
SIM algorithm which leads on to the MLHL and MLHL-SIM algo-
rithms that are explained in Sections 3 and 4. Section 5 introduces the
Beta Hebbian Learning used to derive the learning rules for the new
algorithm, Beta-SIM, which is described in detail in Section 6. Section
7 presents 3 quality measures, previously proposed in the literature,
used to evaluate different properties of topology-preserving mapping
algorithms in general. Section 8 analyzes the capabilities of the Beta-
SIM algorithm by applying it to perform a detailed study over 2
artificial datasets and 16 real benchmark datasets with diverse
characteristics. Finally, Section 9 contains the final conclusions and
outlines future lines of research.

2. Scale Invariant Map

The main target of the family of topology preserving maps
(Kohonen, 1998) is to produce low dimensional representations of
high dimensional datasets, maintaining the topological features of the
input space.

SIM (Baruque and Corchado, 2014, 2009) is an algorithm similar to
SOM (Kohonen, 1998), but the training methodology is based on
negative feedback networks (Fyfe, 2005, 1997). SIM uses a neighbor-
hood function and competitive learning in the same way as the SOM.
The SIM model is defined by Eqs. (1)–(3):
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where x is an N-dimensional input vector, and y an M-dimensional
output vector, with Wij being the weight linking input j to output i; e is
the residual or error, η the learning rate, Wc refers to the weights of the
winning neuron and hci represents the neighborhood function, which is
a Gaussian function in this case.

The input data xj is feedforward through weights Wij to create
output data yi, where a linear summation is performed to obtain the
activation of the output neurons (1). Based on the activation from the
feedforward algorithm, a winner neuron is selected using the minimum
Euclidean distance (the neuron whose output vector is closest to the
input vector wins) or using the maximum activation (the output neuron
with the highest activation wins). After selection of an output winner,
denoted as c, it is deemed to be firing (yc=1) and all other outputs are
suppressed (yi=0, ∀i‡c).

The winner’s activation is then used as feedback (2) using the
winner’s weights subtracted from the input data, and simple Hebbian
learning to update the weights of all nodes in the neighborhood of the
winner (3).

3. An exponential family of learning rules

Maximum Likelihood Hebbian Learning (MLHL) (Corchado et al.,
2004) is a family of rules created from exponential distributions, which
can be derived to express the Probability Density Function (PDF) of the
residual after feedback as (4):

p e
Z

exp e( ) = 1 (− ),p
(4)

It can then be denoted as a general cost function associated with
this network as (5):

J E log p e E e K= (− ( ( ))) = ( + ),p (5)

Fig. 1. Scale Invariant Map mapping, where each neuron captures a “pie slice” of the
data according to the angular distribution of the input data.
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