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A B S T R A C T

Since online social networks usually have quite huge size and limited access, smaller subgraphs of them are
often produced and analysed as the representative samples of original graphs. Sampling algorithms proposed so
far are categorized into three main classes: node sampling, edge sampling, and topology-based sampling. Classic
node sampling algorithm, despite its simplicity, performs surprisingly well in many situations. But the problem
with node sampling is that the connectivity in sampled subgraph is less likely to be preserved. This paper
proposes a topology–based node sampling algorithm using irregular cellular learning automata (ICLA), called
ICLA-NS. In this algorithm, at first an initial sample subgraph of the input graph is generated using the node
sampling method and then an ICLA isomorphic to the input graph is utilized to improve the sample in such a
way that the connectivity of the sample is ensured and at the same time the high degree nodes are also included
in the sample. Experimental results on real–world social networks indicate that the proposed sampling
algorithm ICLA-NS preserves more accurately the underlying properties of the original graph compared to
existing sampling methods in terms of Kolmogorov-Smirnov (KS) test.

1. Introduction

Social network and the analysis of it is an inherently interdisci-
plinary field which is emerged from computer science, sociology, social
psychology, statistical physics, and graph theory (Yang et al., 2013; Li
et al., 2013; So and Long, 2013). The research on social network offers
a framework for analysing the structure of whole network graph,
identifying local and global patterns in these structures and studying
dynamical properties on the network. Despite the importance of
studying real–world social networks, it would be difficult to capture
the structural properties of the whole network since we often face large
scale networks with access limitations. To deal with this problem, many
sampling methods have been reported in literature. Generally, the main
goal of a sampling method is to produce a representative subgraph
from the original network which can be used for studying character-
istics of the larger network. The term “representative subgraph
sampling” defined by Leskovec and Faloutsos (2006) refers to produ-
cing a small sample of the original network, whose characteristics
represent as accurately as possible the entire network. There exist
many characteristics which describe a network structure such as
degree, clustering coefficient, and k –core distributions. Authors in
(Leskovec and Faloutsos, 2006) proposed a set of empirical rules by
which the measurements of the sample can be scaled up, to recover

estimates for the original graph. Work in (Ebbes et al., 2013)
investigated the ability of nine different sampling methods in preser-
ving the structural properties such as degree, clustering coefficient,
betweenness centrality, and closeness centrality of social networks. Lee
et al. (2006) exploited three sampling algorithms and investigated the
statistical properties of the samples taken by them. They focused on the
topological properties such as degree distribution, average path length,
assortativity, clustering coefficient, and betweenness centrality distri-
bution.

Existing sampling methods can be categorized into three main
classes: node, edge and topology–based sampling. Despite its simpli-
city, classic node sampling method performs surprisingly well in many
situations (Leskovec and Faloutsos, 2006). The problem with node
sampling is that connectivity in sampled subgraph is less likely to be
preserved (Lee et al., 2006). Considering this in mind, this paper
propose a topology–based node sampling algorithm, called ICLA-NS,
that utilizes an irregular cellular learning automata (ICLA) to produce
representative subgraphs by ensuring the connectivity of sampled
subgraphs and sampling the nodes with high degree. ICLA-NS first
constructs an initial sample subgraph of the input graph using the node
sampling method, and then uses an ICLA isomorphic to the input
graph to improve the sample by repeatedly replacing nodes in the
sample with the nodes found by exploring the input graph. In order to
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evaluate the performance of the proposed sampling algorithm, we
conduct a number of experiments on real–world networks. Based on
our experimental results, the proposed sampling algorithm outper-
forms the existing sampling algorithms such as node sampling,
Random Walk sampling and Forest Fire sampling in terms of
Kolmogorov-Smirnov (KS) test for degree, clustering coefficient, and
k–core distributions.

The rest of the paper is organized as follows. The next section
presents notations and related works on network sampling. In Section
3, learning automata and cellular learning automata are introduced.
Section 4 describes the proposed sampling algorithm ICLA-NS.
Experimental results are given in Section 5. Section 6 concludes the
paper.

2. Foundations of graph sampling

While the explicit goal of graph sampling algorithms is to produce a
smaller subgraph from the original graph, there often exist other
implicit goals for a sampling process. Three possible goals of graph
sampling algorithms are: Scale-down sampling, Back-in-time sam-
pling, and Supervised sampling. The Scale-down sampling aims to
sample a representative subgraph that have similar (or scaled-down)
topological properties to those of the original graph (Leskovec and
Faloutsos, 2006). In Back-in-time sampling, the sampled subgraph
matches temporal evolution of the original graph (Leskovec and
Faloutsos, 2006). That is, the sampled subgraph Gs is similar to what
the original graph G looked like when it was of the same size asGs.
Finally, the goal of supervised sampling is to identify nodes belonging
to a specific category (Fang et al., 2013, 2015, 2016). For this purpose,
a biased sampling is done to sample a subgraph under the require-
ments related to that category.

In this paper, we focus on the goal of sampling a representative
subgraph (Scale-down sampling). This section provides some common
notations and a formal definition of the graph sampling problem
considered in this paper. In this section, several taxonomies of
sampling algorithms reported in the literatures are also given.

2.1. Notations and definitions

LetG V E( , ) be an unweighted and undirected graph with the
node set V v v v= { , , . . . , }n1 2 and the set of edges
E e v V v V= { | ∈ , ∈ }ij i j , such that V n= denotes the number of
nodes, and E m= denotes the number of edges. The neighbourhood
of node vi is defined as N v v | e E v V( ) = { ∈ , ∈ }i j ij j , such that d v N v( ) = ( )i i
is the degree of nodevi.

In this paper, we consider the following graph sampling problem.
Given an input graph G V E( , ) and a sampling fraction f , a sampling
algorithm samples a subgraph G V E( , )s s s with a subset of the nodesV V⊂s
and a subset of the edgesE e v V v V⊂ { | ∈ , ∈ }s ij i s j s , such that V fn=s .
The goal is to ensure that the sampled subgraph Gs preserves the
topological properties of the original graph G.

2.2. Related works

Graph sampling algorithms can be classified in several ways. We
present three such classifications, namely random versus topology –
based sampling, static versus streaming graph sampling, and simple
versus extended sampling.

2.2.1. Random versus topology – based sampling
In random sampling methods, a sample subgraph is constructed by

the random selection of either nodes or edges, and so these methods
can be categorized into two main subclasses: node, and edge sampling.
Classic node sampling (NS) (Leskovec and Faloutsos, 2006) chooses
nodes uniformly at random from the original graph G. For a required
fraction f of nodes, each node is independently sampled with a

probability of f . The sampled subgraph Gs consists of the chosen
nodesVs as well as all the edges among them (Es). Despite its simplicity,
classic NS performs surprisingly well in many situations (Leskovec and
Faloutsos, 2006). Authors in (Stumpf et al., 2005) indicated that classic
node sampling does not accurately retain properties for graphs with
power–law degree distributions. Although node sampling includes all
the edges related to the sampled node set Vs, Lee et al. (2006) shown
that the original level of connectivity is less likely to be preserved. Many
other variations of NS have been developed in recent years
(Krishnamurthy et al., 2005; Leskovec and Faloutsos, 2006; Ahmed
et al., 2010, 2013).

Classic edge sampling (ES) chooses edges (rather than nodes)
independently and uniformly at random from the original graphG.
For each edge chosen (and added to Es), both incident nodes are added
to Vs. So, the sampled subgraph Gs is constructed by including the
sampled edges in Es and their incident nodes in Vs. Since classic edge
sampling is biased towards high degree nodes and samples both
incident nodes of chosen edges, it can accurately preserve the path
length distributions (Ahmed et al., 2010, 2013). However, ES is less
likely to capture the original clustering and connectivity, since it
samples the edges independently (Lee et al., 2006). Classic edge
sampling generally produces sparse subgraphs. Some improved varia-
tions of ES have been proposed so far (Krishnamurthy et al., 2005;
Leskovec and Faloutsos, 2006; Ahmed et al., 2010, 2013).

There also exist many sampling methods based on topological
structure of graph. The common idea in this class of sampling methods
is to explore the neighbouring nodes of a given node. These methods
can be categorized into two subclasses: random walks and graph
traversals. In the category random walks, sampling is performed with
replacement, i.e. nodes can be revisited. This category includes classic
Random Walk (RW) (Lovász, 1993; Yoon et al., 2007; Lu and Li, 2012)
and its variations (Henzinger et al., 2000; Gkantsidis et al., 2006;
Stutzbach et al., 2009; Rasti et al., 2009; Ribeiro and Towsley, 2010;
Avrachenkov et al., 2010; Kurant et al., 2011; Lee et al., 2012;
Rezvanian et al., 2014). In the category graph traversals, each node
is visited at most once (sampling without replacement). Methods in
this category differ in the order in which they visit the nodes. Examples
are Breadth –First Search (BFS) (Lee et al., 2006), Depth–First Search
(DFS) (Even, 2011), Forest Fire (FF) (Leskovec and Faloutsos, 2006),
Snowball Sampling (SBS) (Goodman, 1961; Newman, 2003b;
Illenberger et al., 2011), Respondent–Driven Sampling (RDS)
(Heckathorn, 1997; Goel and Salganik, 2010), and Expansion
Sampling (Maiya and Berger-Wolf, 2010). The sampled subgraph Gs
in topology–based sampling methods consists of the explored nodes
and edges. Sampling methods based on topology outperform simple
methods such as NS and ES (Leskovec and Faloutsos, 2006).

2.2.2. Static versus streaming graph sampling
The sampling algorithms based on the assumption of a static graph

(Goodman, 1961; Lovász, 1993; Heckathorn, 1997; Leskovec and
Faloutsos, 2006; Lee et al., 2006; Maiya and Berger-Wolf, 2010;
Even, 2011) consider the input graph only at one point in time and
assume that it is of moderate size which can fit in the main memory.
However, many real–world networks are too large to fit in the memory,
and evolve continuously over time and thus are not fully observable at
any point in time. Activity networks (e.g. email), social media (e.g.
Twitter), and content sharing (e.g. Facebook, YouTube) are the
examples of such large dynamic networks. Analysing these networks,
called streaming graphs, is increasingly important for identifying
patterns of interactions among individuals and investigating how the
network structure evolves over time. As a result, the streaming graph
sampling has received more attention in recent years. Researchers have
developed algorithms for sampling from streaming graphs (Ahmed
et al., 2010, 2013). Authors in (Ahmed et al., 2013) outlined a
spectrum of computational models for designing sampling algorithms,
going from static to streaming graphs. They presented the streaming
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