
Understanding failure response in service discovery systems

C. Dabrowski *, K. Mills, S. Quirolgico

National Institute of Standards and Technology, Information Technology Laboratory, 100 Bureau Drive, Mailstop 8970,

Gaithersburg, MD 20899-8970, United States

Received 1 March 2006; received in revised form 21 November 2006; accepted 23 November 2006
Available online 17 January 2007

Abstract

Service discovery systems enable distributed components to find each other without prior arrangement, to express capabilities and
needs, to aggregate into useful compositions, and to detect and adapt to changes. First-generation discovery systems can be categorized
based on one of three underlying architectures and on choice of behaviors for discovery, monitoring, and recovery. This paper reports a
series of investigations into the robustness of designs that underlie selected service discovery systems. The paper presents a set of exper-
imental methods for analysis of robustness in discovery systems under increasing failure intensity. These methods yield quantitative mea-
sures for effectiveness, responsiveness, and efficiency. Using these methods, we characterize robustness of alternate service discovery
architectures and discuss benefits and costs of various system configurations. Overall, we find that first-generation service discovery sys-
tems can be robust under difficult failure environments. This work contributes to better understanding of failure behavior in existing
discovery systems, allowing potential users to configure deployments to obtain the best achievable robustness at the least available cost.
The work also contributes to design improvements for next-generation service discovery systems.
Published by Elsevier Inc.

Keywords: Distributed systems; Robustness; Service discovery

1. Introduction

Various teams designed and implemented a first genera-
tion of (competing) service discovery systems that enable
distributed components to find each other without prior
arrangement, to express capabilities and needs, to compose
into collections, and to detect and adapt to changes. Each
specific design defines a system structure, along with proto-
cols for discovery, monitoring, and recovery. Some designs
assume a specific underlying communication technology,
some designs focus on one application domain, and some
designs were conceived to operate over Internet protocols
and to support many applications.

In this paper, we investigate the architectures and
behaviors underlying Jini Networking Technology1

(Arnold, 1999), Universal Plug and Play (UPnP) (Univer-
sal Plug and Play Device Architecture, 2000), and the Ser-
vice Location Protocol (SLP) (Guttman et al., 1999) when
subjected to various failures. Elsewhere (Dabrowski et al.,
2005), we present a generic model encompassing the
designs of these systems and we identify performance issues
that could arise. While this previous work considers system
behavior absent failures, here we explore the relative ability
of discovery systems to cope with different types and inten-
sities of failure.

We reported preliminary results in various conference
papers (Dabrowski and Mills, 2001; Dabrowski et al.,

0164-1212/$ - see front matter Published by Elsevier Inc.

doi:10.1016/j.jss.2006.11.017

* Corresponding author. Tel.: +1 301 975 3249; fax: +1 301 948 6213.
E-mail address: cdabrowski@nist.gov (C. Dabrowski).

1 Certain commercial products or company names are identified in this
paper to describe our study adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of
Standards and Technology, nor to imply that the products or names
identified are necessarily the best available for the purpose.

www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 896–917

mailto:cdabrowski@nist.gov


2002a,b, 2003); however, this paper improves upon earlier
work in two ways. First, we extend the scope of our results
to cover three architectures (two-party, three-party, and
adaptive), three failure scenarios (configuration restora-
tion, service acquisition and maintenance, and consistency
maintenance), four failure types (power failure and restart,
node failure, communication failure, and message loss),
and a set of failure detection and recovery techniques at
three levels (transport protocols, discovery protocols, and
application logic). Second, we increase the amount of data
collected and analyzed to obtain better estimates for per-
formance metrics at high failure rates.

This paper contributes to the understanding of service
discovery systems. First, this paper characterizes robust-
ness of discovery systems under difficult failure environ-
ments. This paper further identifies and discusses the
most significant design and configuration decisions that
influence robustness. Second, this paper identifies specific
design and deployment decisions that could lead to dimin-
ished robustness. Third, this paper quantifies the relative
cost associated with specific decisions. Overall, the infor-
mation provided here should contribute to better under-
standing of failure behavior in existing discovery systems,
allowing potential users to configure deployments to obtain
the best achievable robustness at the least available cost.
Further, results and discussions presented here have con-
tributed to design improvements in the next generation of
discovery systems (Sundramoorthy, 2006; Sundramoorthy
et al., 2004).

This paper also contributes experimental methods to
study robustness in distributed systems. First, we introduce
and apply metrics to quantify relative robustness and cost
at the application level for various scenarios. Second, we
present a technique to decompose aggregate robustness
into detection and recovery latency. Using this technique,
we show how similar robustness can be achieved through
different behaviors arising from particular design choices.
Our methods can be adopted, adapted, or extended by
other researchers to investigate failure response in distrib-
uted systems – a topic due for increased study.

We begin (in Section 2) with a synopsis of existing work
comparing and contrasting service discovery systems. Most
previous work focuses on functional comparisons, on
means for translating among discovery systems, or on
improving existing designs. Our own related work
(Dabrowski et al., 2005; Bowers et al., 2003; Mills and
Dabrowski, 2003; Rose et al., 2003; Mills et al., 2004;
Tan and Mills, 2005) attempts to unify designs for several
existing discovery systems, and investigates performance
problems arising when such systems are deployed at large
scale.

In Section 3, we survey the design and function of ser-
vice discovery systems. We introduce a model to convey
concepts across selected systems. Using our model, we
describe how discovery operates under UPnP (a two-party
architecture, where clients issue multicast queries to find
services), Jini (a three-party architecture, where clients con-

sult a directory to find services), and SLP (which is a three-
party architecture that can adapt to become a two-party
architecture). We also describe two mechanisms (polling
and notification) used by discovery systems to maintain
consistent information among distributed replicas. The
architectures, discovery procedures, and consistency main-
tenance mechanisms described in Section 3 form the basis
for scenarios, experiments, and results recounted in later
sections.

In Section 4, we introduce selected types of failure that
can impede a distributed system and we discuss selected
techniques to detect and recover at three layers. At the low-
est layer, transport protocols may include detection and
recovery mechanisms (e.g., acknowledgments, retransmis-
sions, and exceptions). In the middle layer, discovery pro-
tocols typically include some detection and recovery
mechanisms (e.g., heartbeats and soft state). At the top
layer, applications may take recovery actions in reaction
to exceptions raised by transport protocols. Interactions
among these detection and recovery techniques can become
quite intricate and difficult to understand.

In Section 5, we describe our experiment methodology,
consisting of six steps: (1) constructing (simulation) models
reflecting structure, behavior, and deployments of selected
service discovery systems, (2) incorporating failure models
into the simulations (3) devising scenarios and related met-
rics to quantify robustness and cost, (4) simulating scenar-
ios for selected configurations over a range of failure rates,
(5) collecting, analyzing, and plotting data from simula-
tions, and (6) investigating unexpected results and anoma-
lies. In Section 6, we describe the design and results for our
experiments: (1) restart after power failure, (2) service
acquisition and maintenance impeded by node failures,
and consistency maintenance impeded by (3) communica-
tion failures and (4) message loss. We report results from
these four experiments, which encompass 30 configura-
tions. For each experiment, we explain the scenario and
failure model, define metrics, present results, outline find-
ings, and discuss unexpected outcomes. We close in Section
7 with a précis of our findings and contributions.

2. Related work

Emergence of various specifications for service discovery
systems, coupled with the anticipated importance of dis-
covery functionality in future distributed systems, has stim-
ulated significant interest in understanding similarities and
differences among competing designs. Most existing com-
parisons focus on architecture, features, and function. A
few comparisons also consider programming differences,
because most discovery systems are conceived as middle-
ware to support distributed applications. Bettstetter and
Renner (2000) compare SLP, Jini, UPnP, and Bluetooth
with respect to architecture, function, and features, and
consider underlying requirements for programming
languages, operating systems, and network protocols.
The comparison is expressed using concepts and termino-

C. Dabrowski et al. / The Journal of Systems and Software 80 (2007) 896–917 897



Download	English	Version:

https://daneshyari.com/en/article/494282

Download	Persian	Version:

https://daneshyari.com/article/494282

Daneshyari.com

https://daneshyari.com/en/article/494282
https://daneshyari.com/article/494282
https://daneshyari.com/

