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a b s t r a c t

A game-theoretic distributed decision making approach is presented for the problem of control effort
allocation in a robotic team based on a novel variant of fictitious play. The proposed learning process
allows the robots to accomplish their objectives by coordinating their actions in order to efficiently
complete their tasks. In particular, each robot of the team predicts the other robots' planned actions,
while making decisions to maximise their own expected reward that depends on the reward for joint
successful completion of the task. Action selection is interpreted as an n-player cooperative game. The
approach presented can be seen as part of the Belief Desire Intention (BDI) framework, also can address
the problem of cooperative, legal, safe, considerate and emphatic decisions by robots if their individual
and group rewards are suitably defined. After theoretical analysis the performance of the proposed al-
gorithm is tested on four simulation scenarios. The first one is a coordination game between two material
handling robots, the second one is a warehouse patrolling task by a team of robots, the third one presents
a coordination mechanism between two robots that carry a heavy object on a corridor and the fourth one
is an example of coordination on a sensors network.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in industrial automation technology often
require distributed optimisation in a multi-agent system where
each agent controls a machine. An application of particular inter-
est, addressed in this paper through a game-theoretic approach, is
the coordination of robot teams. Teams of robots can be used in
many domains such as mine detection (Zhang et al., 2001), med-
ication delivery in medical facilities (Evans and Krishnamurthy,
1998), formation control (Raffard et al., 2004) and exploration of
unknown environments (Simmons et al., 2000; Madhavan et al.,
2004). In these cases teams of intelligent robots should coordinate
in order to accomplish a desired task. When autonomy is a desired
property of a multi-robot system then self-coordination is neces-
sary between the robots of the team. Applications of these
methodologies also include wireless sensor networks (Makarenko
and Durrant-Whyte, 2004; Kho et al., 2009a; Zhang et al., 2004;
Kho et al., 2009b), smart grids (Voice et al., 2011; Ayken and Imura,
2012), water distribution system optimisation (Zecchin et al.,
2006) and scheduling problems (Stranjak et al., 2008).

Game theory has also been used to design optimal controllers
when the objective is coordination, see e.g. Semsar-Kazerooni and
Khorasani (2009). Using this approach, in Semsar-Kazerooni and

Khorasani (2008, 2009) the agents/robots eventually reach the
Nash equilibrium of a coordination game. Another approach is
presented in Bauso et al. (2006), based on agents' cost functions,
which use local components and the assumption that the states of
the other agents are constant.

Fictitious play is an iterative learning process where players
choose an action that maximises their expected rewards based on
their beliefs about their opponents' strategies. The players update
these beliefs after observing their opponents' actions. Even though
fictitious play converges to the Nash equilibrium for certain cate-
gories of games (Robinson, 1951; Miyasawa, 1961; Nachbar, 1990;
Monderer and Shapley, 1996; Fudenberg and Levine, 1998), this
convergence can be very slow because of the assumption that
players use a fixed strategy in the whole game (Fudenberg and
Levine, 1998). Speed up of the convergence can be facilitated by an
alternative approach, which was presented in Smyrnakis and Le-
slie (2010), where opponents' strategies vary through time and
players use particle filters to predict them. Though providing faster
convergence, this approach has the drawback of high computa-
tional costs of the particle filters. In applications where the com-
putational cost is important, as the coordination of many UAVs, the
particle filters approach is intractable. An alternative, that we
propose here, is to use extended Kalman filters (EKF) instead of
predicting opponents' strategies using particle filters. EKFs have
much smaller computational costs than the particle filter variant
of fictitious play algorithm that has been proposed in Smyrnakis
and Leslie (2010). Moreover, in contrast to Smyrnakis and Leslie
(2010), we provide a proof of convergence to Nash equilibrium of
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the proposed learning algorithm for potential games. Potential
games are of particular interest as many distributed optimisation
tasks can be cast as potential games. Hence convergence of an
algorithm to the Nash equilibrium of a potential game is equiva-
lent to convergence to the global or local optimum of the dis-
tributed optimisation problem.

Thus the proposed learning process can be used as a design
methodology for cooperative control based on game theory, which
overlaps with solutions in the area of distributed optimisation
(Chapman et al., 2011a). Each agent i strives to maximise a global
control reward, as negative of the control cost, through minimising
its private control cost, which is associated with the global one.
The private cost function of an agent i incorporates terms that not
only depend on agent i, but also on costs associated with the ac-
tions of other agents. As the agents strive to minimise a common
cost function through their individual ones, the problem ad-
dressed here can also be seen as a distributed optimisation pro-
blem. In this work we enable the agents to learn how they mini-
mise their cost function through communication and interaction
with other agents, instead of finding the Nash equilibrium of the
game, which is not possible in polynomial time for some games
(Daskalakis et al., 2006). In the proposed scheme robots learn and
change their behaviour according to the other robots' actions. The
learning algorithm, which is based on fictitious play (Brown, 1951),
serves as the coordination mechanism of the controllers of team
members. In the proposed cooperative control methodology there
is an implicit coordination phase where agents learn other agents'
policies and then they use this knowledge to decide on the action
that minimises their cost functions. Additionally the proposed
control module can be seen as a part of the BDI framework since
agents update their beliefs about their opponents' strategies given
the state of the environment.

The remainder of this paper is organised as follows. We start
with a brief description of relevant game-theoretic definitions.
Section 3 presents some background material about rational
agents. Section 4 introduces the learning algorithm that we use in
our cooperative game-based robot cooperation controller, Section
5 contains the main theoretical results and Section 6 contains the
simulation results in order to define the parameters of the pro-
posed algorithm. Section 7 presents simulation results before
conclusions are drawn.

2. Game theoretical definitions

In this section we will briefly present some basic definitions
from game theory, since the learning block of our controller is
based on these. A game Γ is defined by a set of players ,

∈ { … }i 1, 2, , , who can choose an action, si, from a finite discrete
set Si. We then can define the joint action s, = ( … )s s s, ,1 , that is
played in a game as an element of the product set = × =

=S Si
i i

1 . Each
player i receives a reward, ri, after choosing an action si. The re-
ward, also called the utility, is a map from the joint action space to
real numbers, →r S R:i . We will often write = ( )−s s s,i i , where si is
the action of player i and −s i is the joint action of player i's op-
ponents. When players select their actions using a probability
distribution they use mixed strategies. The mixed strategy of a
player i, si, is an element of the set Δi, where Δi is the set of all the
probability distributions over the action space Si. The joint mixed
strategy, σ , is then an element of Δ Δ= × =

=
i
i i

1 . A strategy where a
specific action is chosen with probability 1 is referred to as pure
strategy. Analogously to the joint actions we will write σ σ σ= ( )−,i i

for mixed strategies. The expected utility a player i will gain if it
chooses a strategy si (resp. si), when its opponents choose the joint
strategy s-i, is denoted by σ σ( )−r ,i i i (resp. σ( )−r s ,i i i ).

A game, depending on the structure of its reward functions, can
be characterised either as competitive or as a coordination game.
In competitive games players have conflicted interest and there is
not a single joint action where all players maximise their utilities.
Zero sum games are a representative example of competitive
games where the reward of a player i is the loss of other players.
An example of a zero-sum game is presented in Table 1. On the
other hand in coordination games players either share a common
reward function or their rewards are maximised in the same joint
action. A very simple example of a coordination game where
players share the same rewards is depicted in Table 2. Even though
competitive games are the most studied games, we will focus our
work on coordination games because they naturally formulate a
solution to distributed optimisation and coordination.

2.1. Best response and Nash equilibrium

A common decision rule in game theory is best response. Best
response is defined as the action that maximises players' expected
utility given their opponents' strategies. Thus for a specific mixed
strategy s� i we evaluate the best response as:

σ σ σ^ ( ) = ( )
( )

−

∈

−r sarg max ,
1

pure
i i

s S

i i i

i

A joint mixed strategy σ σ σ^ = (^ ^ )−
,

i i is called a Nash equilibrium.
Nash (1950) showed that every game has at least one equilibrium
which satisfies:

σ σ σ σ σ Δ(^ ^ ) ≥ ( ^ ) ∈ ( )− −
r r i, , for any and 2i i i i i i i i

Eq. (2) implies that if a strategy σ̂ is a Nash equilibrium then it is
not possible for a player to increase their utility by unilaterally
changing its strategy. When all the robotic players in a game select
their actions using pure strategies then the equilibrium is referred
to as pure Nash equilibrium.

2.2. Distributed optimisation by potential games

It is possible to cast distributed optimisation problems as po-
tential games (Arslan et al., 2007; Chapman et al., 2011b), thus the
task of finding an optimal solution for a distributed optimisation
problem can be seen as the search for a Nash equilibrium in a
game. An optimisation problem can be solved distributively if it
can be divided into  coupled or independent sub-problems with
the following property (Bertsekas, 1982):

( ) − (˜) > ⇔ ( ) − (˜ ) > ∈ ∀ ˜ ( )r s r s r s r s i s s0 0, , , 3i i i i

Table 1
Rewards of two players in a zero sum game as function of the outcome of throwing
a coin: matching pennies game.

Head Tails

Head 1,�1 �1,1
Tails �1,1 1,�1

Table 2
Rewards of two players in a simple co-
ordination game as function of joint moves
to the left and up (L,U) or right and down
(R,D).

L R

U 1,1 0,0
D 0,0 1,1
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