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A hierarchical method for the approximate computation of the consensus state of a network of agents is
investigated. The method is motivated theoretically by spectral graph theory arguments. In a first phase,
the graph is divided into a number of subgraphs with good spectral properties, i.e., a fast convergence
toward the local consensus state of each subgraph. To find the subgraphs, suitable clustering methods are
used. Then, an auxiliary graph is considered, to determine the final approximation of the consensus state
in the original network. A theoretical investigation is performed of cases for which the hierarchical
consensus method has a better performance guarantee than the non-hierarchical one (i.e., it requires a
smaller number of iterations to guarantee a desired accuracy in the approximation of the consensus state
of the original network). Moreover, numerical results demonstrate the effectiveness of the hierarchical
consensus method for several case studies modeling real-world networks.
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1. Introduction

The theory of complex systems deals with the study of the
behavior of systems made of several agents (or units) that interact
among each other; typical examples are social (Del Vicario et al.,
2016) and economic (Battiston et al., 2016) networks, physical
systems made of interacting particles (Castellano et al., 2009), and
biological (Pastor-Satorras et al., 2015) and ecological (Vivaldo
et al., 2016) systems. In all these cases, one has often to deal with a
large number of units, which have no global knowledge about the
structure of the whole system, as their interactions are limited to
their neighbors in the network. Control problems on such systems
are strongly influenced by structural properties of their graph of
interconnections, described, e.g., in terms of a weighted/un-
weighted adjacency or graph-Laplacian matrix (Mesbahi and
Egerstedt, 2010; Liu et al., 2011). In particular, several studies (see,
e.g., Lovisari and Zampieri, 2012 for a tutorial) deal with the
analysis of the conditions under which a complex system has all
its agents reach asymptotically a common state, called consensus
state (i.e., they agree asymptotically with the same opinion) and,
in case of a positive answer, with investigating the rate of con-
vergence to the consensus state. It is well-known (see, e.g., Boyd
et al., 2004; Lovisari and Zampieri, 2012) that such a convergence
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rate is related to the spectral properties of the graph of inter-
connections (e.g., the ones of a transition probability matrix one
can associate to it). The work (Boyd et al., 2004) optimizes such
properties by solving a suitable convex optimization problem,
called Fastest Mixing Markov-Chain (FMMC) problem. In our pre-
vious work (Gnecco et al., 2015), we optimized a suitable trade-off
between the rate of convergence to the consensus state and the
sparsity of the graph of interconnections, which is a way to insert
in the model a possible cost of communication associated with
each link used. In more details, the optimization problem con-
sidered in Gnecco et al. (2015) (which is a substantial extension of
the conference paper, Gnecco et al., 2014) is an [;-norm (convex)
regularization of the FMMC problem, called FMMC-I,(5) problem,
where » > 0 is a regularization parameter. Its main contributions
are some theoretical results about the choice of 7 to avoid triviality
of the resulting optimal solution, and an interpretation of the
FMMC-I,(») problem as a robust version of the FMMC problem, in
which one is allowed to select only nominal weights associated
with the edges of the graph, as such weights enter the model to-
gether with an intrinsic relative uncertainty, which cannot be re-
moved unless the nominal values are chosen to be equal to 0. A
(nonconvex) lp-pseudo-norm regularized version of the FMMC
problem is also analyzed in Gnecco et al. (2015). Some ways to
restrict the search for its optimal solution to suitable feasible so-
lutions are also investigated therein. Finally, numerical results
demonstrate the effectiveness of both regularized approaches
(with computational advantages for the convex case) in achieving
- as desired — a “good” trade-off between sparsity of the network
and its rate of convergence to the consensus state.
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The approach followed in this paper is substantially different
from Gnecco et al. (2015), although the goal is similar. In more
details, the main idea of the present work is the following: for a
fixed network topology, we aim at speeding up consensus using a
“hierarchical” approach, whose theoretical motivation relies on
spectral properties of the agents’ network. Our approach is based
on dividing the original connected graph into many connected
subgraphs, which are expected (due to spectral graph theory ar-
guments, Chung, 1997) to have “good” spectral properties. In this
case, the rate of convergence to the “local” consensus state (i.e., the
consensus state of each subgraph) is faster than the one to the
“global” consensus state of the original graph. In a second phase,
the resulting approximations of the local consensus states of the
subgraphs are mixed to get (up to a certain tolerance) global
consensus on an auxiliary graph, whose nodes are selected nodes
of the subgraphs (one for each subgraph), and for which “good”
spectral properties are still expected (again, due to spectral graph
theory arguments). To generate the subgraphs, we apply both a
technique known as spectral clustering (von Luxburg, 2007), and a
second ad hoc technique that we call nearest supernode approach,
which are both expected to extract sufficiently “dense” subgraphs
(e.g., made of a single cluster of nodes, with each node connected
directly to several other nodes of the same cluster). For such
subgraphs, the rate of convergence to the local consensus state is
relatively fast (since the second-largest eigenvalue modulus of the
transition probability matrix associated with each such subgraph
is relatively small). In this way, in the hierarchical approach, one
fixes the sparsity of the graph, then speeds up the approximation
of its consensus state possibly even more than through the re-
solution of the FMMC problem, since the latter does not allow for a
hierarchical solution. It is worth noting that, in case the original
graph is not sparse, one can still apply the hierarchical consensus
method described in the paper after a preliminary step of edge
sparsification (this could be achieved, e.g., applying the algorithms
detailed in Batson et al., 2013), to construct another graph with a
very similar spectral behavior, but with a (typically much) smaller
number of edges. Then, the hierarchical consensus method could
be applied directly to this sparsified graph. It has to be remarked
that approaches similar to the one presented in this paper have
been proposed also in Epstein et al. (2008) and Li and Bai (2012).
In such works, the multi-agent system is also decomposed into a
hierarchical structure. Nevertheless, neither Epstein et al. (2008)
nor Li and Bai (2012) consider techniques that exploit spectral
graph theory arguments for the generation of the subgraphs.
Hence, compared with Epstein et al. (2008) and Li and Bai (2012),
the main original contribution of the present work lies on the
techniques we adopt to determine the different connected sub-
graphs, and on the theoretical motivations we provide for such
techniques, based on spectral graph theory arguments. In addition
to this, we perform an extensive numerical evaluation of the
hierarchical consensus method on several case studies modeling
real-world networks, achieving in most cases better performance
with respect to a non-hierarchical consensus method.

The paper is structured as follows. Section 2 presents an in-
troduction to the consensus problem, and provides an overview of
the hierarchical consensus method. Section 3 provides some the-
oretical arguments supporting the method, based on spectral
graph theory. Section 4 describes clustering techniques used by
the method, whereas Section 6 provides a study of its approx-
imation of the global consensus state. In Section 7, numerical ex-
amples are presented. Section 8 provides a refinement of the basic
setting, based on the results of the numerical examples. Finally,
Section 9 offers conclusions.

2. An overview of the hierarchical consensus method

Let G = (V, E) be a connected undirected graph with N =1V|
nodes and IEl edges. In the context of the paper, the nodes re-
present agents (or units), which locally interact among each other.
Such an interaction is governed by non-negative weights asso-
ciated with the edges, which have to be chosen in a suitable way.
Assuming a linear time-invariant model and describing each agent
as a 1-dimensional dynamical system, the consensus problem re-
fers to the investigation of the convergence to the consensus state
(see the next formula (2)), for the following linear dynamical
system:

X(t+ 1) =Px®, M

where the column vector x(t) € RN contains the states (opinions)
of the N agents at a generic discrete time instant t, while P € R"™N
is a symmetric doubly stochastic matrix (ie, P;>0 for all
i,j=1,...,N, P1=1,and P=P", where 1 is the N-dimensional
vector whose components are all equal to 1). Moreover, P;=0
when the two nodes i and j are different and are not linked by an
edge. Due to the stated assumptions, P can be interpreted as the
matrix of transition probabilities associated with a finite-states
Markov chain, possibly containing self-loops, since P; > 0 for all
iel,.., N.If all the diagonal entries of P are positive and the
weighted graph associated with P is connected, then it is well-
known (see, e.g., Lovisari and Zampieri, 2012) that, for the ith

component x%(t) of x(t), one has

=2 1T P
X (t)—>N1 x0, Vvi=1,..,N, )
with x(0) being the vector of the initial opinions of the agents. The
expression X = %f x(0), which is the average of the initial opinions
of the agents, is the consensus state of the system.!

It is well-known (see, e.g., Como et al., 2012; Fagnani, 2014)
that, at any discrete time instant t, the distance from the consensus
state can be bounded from above as a function of the second-
largest eigenvalue modulus u(P) of the matrix P, in the following
way:

Hz(t) - %11%«0)

2
< 2tp 2(0 2Y
! u=(P)l1xO)l; 3)

where |-|, denotes the I, norm.? For a given P, this rate of con-
vergence cannot be improved, since there exist choices of the in-
itial state x(0) for which a better rate cannot be obtained. Using
(3), the rate of convergence to the consensus state was optimized
in Boyd et al. (2004) by solving a suitable convex optimization
problem, whose optimization variables are the entries of the ma-
trix P. Differently from that approach, in the paper we intend to
speed up consensus by considering local consensus subproblems
formulated on different subgraphs G, = (V,, E,,) of the original

! Since in the paper we are dealing with undirected graphs, hence with sym-
metric transition probability matrices, the consensus state is the average of the
initial opinions of the agents. Without this assumption, the consensus state belongs
only to the convex hull of the set of such opinions. To distinguish between these
two situations, the consensus problem considered in this paper is sometimes called
“average” consensus problem (Lovisari and Zampieri, 2012).

2 The proof of (3) is as follows (see also Como et al., 2012). The matrix P has the
eigendecomposition P = llf + ZN:'11 A4V jij, where the eigenvalues are 1 and, for
j=1,..,N-1, 4 (with 121 < u(P)). The corresponding unit-norm and orthogonal
eigenvectors are \%1 and, for j=1,..., N -1, v;. Then, using also (1), one gets

1 2 N-1
Hz(t) - —1,75(0>H =|| X Alvjv]x0
N ) ~
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