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ABSTRACT

Adequate fault diagnosis requires actual system data to discriminate between healthy behavior and
various types of faulty behavior. Especially in large networks, it is often impracticable to monitor a large
number of variables for each subsystem. This results in a need for fault diagnosis methods that can work
with a limited set of monitoring signals. In this paper, we propose such an approach for fault diagnosis in
networks. This approach is knowledge-based and uses the temporal, spatial, and spatio-temporal net-
work dependencies as diagnostic features. These features can be derived from the existing monitoring
signals; so no additional sensors are required. Besides that the proposed approach requires only a few
monitoring devices, it is, thanks to the use of the spatial dependencies, robust with respect to en-
vironmental disturbances. For a railway track circuit example, we show that, without the temporal,
spatial, and spatio-temporal features, it is not possible to identify the cause of a detected fault. Including
the additional features allows potential causes to be identified. For the track circuit case, based on one
signal, we can distinguish between six fault classes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we propose an approach to fault diagnosis in
networks in the presence of environmental disturbances. Because
it is often not feasible to monitor a large number of variables for
each subsystem in the network, we particularly look into diagnosis
strategies that require only a few monitored variables.

With respect to the diagnosis strategy, a choice needs to be
made between a model-based, a model-free, or a hybrid approach
(see Fig. 1). Model-based approaches (Chen and Patton, 2012;
Isermann, 2005; Hwang et al., 2010; Nan et al., 2008; Kukal et al.,
2009; Fekih et al., 2007) rely on a qualitative or quantitative de-
scription of the relations between the monitoring data and system
health, while model-free approaches (Oukhellou et al., 2010; Cherfi
et al., 2012) use historical data and techniques from machine
learning or pattern recognition. Finally, hybrid approaches (Chen
et al., 2008; Sandidzadeh and Dehghani, 2013; Narasimhan et al.,
2010) use a combination of the aforementioned strategies. The
difficulty with model-free approaches, and to a lesser extent also
with hybrid approaches, is that a representative amount of labeled
historical data is required, which is in general difficult to obtain
(Cherfi et al., 2012). Furthermore, due to preventive maintenance
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activities, usually only few data samples are available that are
characteristic of the natural degradation behavior. For these rea-
sons, we will not further consider model-free and hybrid ap-
proaches in this work.

Model-based approaches can be further divided according to
the way the model is created (Frank et al., 2000) (see Fig. 1).
Analytical approaches (Chen and Patton, 2012; Isermann, 2005;
Hwang et al., 2010) are based on a quantitative model derived
from first principles, knowledge-based approaches (Nan et al.,
2008; Kukal et al., 2009) use expert knowledge to define a quali-
tative model of the system, while data-based approaches (Fekih
et al., 2007) use historical data to learn this model. As we consider
applications where data are scarce, and detailed system insight is
often difficult to obtain because of system complexity and un-
certain environmental disturbances, in this work, a knowledge-
based approach is proposed.

The main contribution of this paper is the introduction of a new
approach to fault diagnosis in general networks. Key features of
this approach are that it relies on the availability of only a limited
number of monitoring signals and that it is robust with respect to
environmental disturbances. To ensure an adequate diagnosis
performance, the following diagnostic features are taken into
account:

1. temporal dependencies in the considered subsystem;
2. spatial dependencies within the network;
3. spatio-temporal dependencies within the network.
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Fig. 1. Classification of the different fault diagnosis methods.

The temporal dependencies are valuable for diagnosis because dif-
ferent faults develop in different ways. Knowing the temporal
system behavior provides insight into possible fault causes. Simi-
larly, the spatial dependencies are useful because they are different
for different types of system faults, i.e. some faults only influence
one subsystem, whereas other faults influence multiple sub-
systems. Finally, the spatio-temporal dependencies become of in-
terest when objects move through the network. In this case, faulty
behavior can be caused by the network itself or by an object
moving through the network. Since object faults manifest them-
selves differently in place and time than network faults, spatio-
temporal network dependencies are a suitable feature to dis-
criminate between the two fault categories. The temporal, spatial,
and spatio-temporal dependencies can be determined from the
available monitoring signals, meaning that they do not require the
installation of additional monitoring devices. To the authors' best
knowledge, the use of spatial and spatio-temporal dependencies
has not been previously proposed for fault diagnosis in networks.

Fig. 2 gives a schematic overview of the proposed diagnosis
approach. The proposed method can be used to monitor all kinds
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Fig. 2. Overview of the proposed diagnosis approach.

of networks where temporal and spatial knowledge is available,
e.g., drinking water distribution networks, building infra-
structures, and highways. In this work, the applicability of the
proposed method is illustrated based on a track circuit diagnosis
task.

Railway track circuits are used for train detection. Fault diag-
nosis for railway track circuits has already been dealt with, e.g. by
Oukhellou et al. (2010), Cherfi et al. (2012), Chen et al. (2008),
Sandidzadeh and Dehghani (2013), Sun and Zhao (2013), and Lin-
Hai et al. (2012). A distinction can be made regarding the way the
monitoring data are obtained, e.g. using a measurement train
(Oukhellou et al., 2010; Cherfi et al., 2012; Sun and Zhao, 2013;
Lin-Hai et al., 2012) or using track-side monitoring devices (Chen
et al,, 2008; Sandidzadeh and Dehghani, 2013). In the current
paper, track-side monitoring devices are considered because they
continuously monitor the system state and are therefore suitable
for the early detection and diagnosis of faults. The main difference
compared to the approaches by Chen et al. (2008) and Sandidza-
deh and Dehghani (2013) is that in those works multiple mon-
itoring signals are used, while in this paper, for each track circuit,
only one measurement signal is available. Although the availability
of a wide variety of measured quantities can be beneficial for
model-based fault diagnosis (Isermann, 2005), it is not realistic to
assume that this will be realized for the whole rail infrastructure,
as the related installation and monitoring costs are high. There-
fore, we restrict ourselves to one monitoring signal: the current
measured at the track circuit receiver.

Note that this paper is an improved and extended version of
our conference paper (Verbert et al., 2015). In particular, the cur-
rent paper adds the following elements: a general framework for
fault diagnosis in networks, inclusion of the spatio-temporal de-
pendencies, and a more extensive example.

The paper consists of three parts: 1. a part regarding fault di-
agnosis in general networks (Section 2), 2. a part covering fault
diagnosis in railway track circuit networks (Sections 3 and 4), and
3. a specific track circuit diagnosis example (Section 5).

2. Fault diagnosis in networks

In this section, we propose a knowledge-based approach to
fault diagnosis in networks. Fig. 3 gives a schematic overview of
the proposed approach. In brief, we collect monitoring signals
from the subsystems in the network, correct them for the effect of
environmental disturbances (Section 2.3), and extract diagnostic
features from the corrected signals. Based on the extracted fea-
tures (see Section 2.2) and knowledge of the system states (see
Section 2.1), we infer the system health. In the remainder, the
different steps are worked out in more detail.

2.1. Diagnosis setup

Consider a network consisting of n subsystems' that can be
graphically represented by a, possibly disconnected, graph (see e.g.
the graph in Fig. 2). In this graph, the black dots represent the
subsystems and the edges represent connections between the
different subsystems. Here, we consider fault diagnosis of an ar-
bitrary subsystem i in the network. We assume that each sub-
system i has one healthy mode f, and ¢ faulty modes f; till f,. For
clarity of presentation and without loss of generality, in the theory
part of this paper we consider only single fault scenarios, i.e. the

! For clarity, in the remainder we assume that all subsystems are identical. The
proposed method can however be easily extended to networks with different types
of subsystems.
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