
An approach to automated videogame beta testing

Jennifer Hernández Bécares, Luis Costero Valero, Pedro Pablo Gómez Martín ⇑
Facultad de Informática, Universidad Complutense de Madrid, C/ Prof. José García Santesmases, 9, 28040 Madrid, Spain

a r t i c l e i n f o

Article history:
Received 22 January 2016
Revised 21 July 2016
Accepted 13 August 2016
Available online 22 August 2016

Keywords:
Gameplay testing
Testing
Automatisation

a b s t r a c t

Videogames developed in the 1970s and 1980s were modest programs created in a couple of months by a
single person, who played the roles of designer, artist and programmer. Since then, videogames have
evolved to become a multi-million dollar industry. Today, AAA game development involves hundreds
of people working together over several years. Management and engineering requirements have changed
at the same pace. Although many of the processes have been adapted over time, this is not quite true for
quality assurance tasks, which are still done mainly manually by human beta testers due to the specific
peculiarities of videogames. This paper presents an approach to automate this beta testing.

� 2016 Published by Elsevier B.V.

1. Introduction

Today, videogames constitute an industry with a revenue com-
parable with the one in the motion picture industry. As an exam-
ple, Grand Theft Auto V, from Rockstar Games, generated $800
million worldwide during its first 24 h on sale in 2013 [1].

Such a success does not come cheap. Videogame development
involves a huge amount of high-skilled people with very different
roles, from programmers to designers, artists and composers to
name just a few. They must work together in long productions that
can last several years. Again, the development of Grand Theft Auto V
required 5 years and up to 1000 people working in seven different
locations [2].

Quality assurance in such big software artifacts is a huge chal-
lenge. Although classic techniques such as unit testing can still be
used, videogames have some peculiarities that usually require
manual testing, which increase the already high costs. For example,
videogames push hardware to the limits, but the user experience
must be adequate in mid-range PCs and, at the same time, make
high-level gaming PCs worthy. Compatibility tests become a night-
mare due to hidden hardware relationships that become more and
more complex over time.

On top of that, videogames are not just software. A big percent-
age of the development budget is devoted to the so-called assets,
which define how the game look (3D models, textures, music,
etc.) and the general gameplay (maps, missions and puzzles). Each
time a level is changed or finetuned, gameplay errors might be

introduced, preventing players from completing it. Although these
problems cannot be considered bugs (at least not software bugs),
they ruin the game, so they must be detected and solved.

In this paper we propose a way of automatising videogame beta
testing, useful for testing the game not only after making changes
in the source code but also for proving that the playability of a
game and the global gameplay are still correct after introducing
level changes. Next section covers some related work, and Section 3
describes component-based architectures, which have become the
standard for videogames in the last decade. Section 4 introduces
videogame testing and its limitations, whilst Section 5 talks about
our proposal of carrying out automatic beta tests for videogames.
Sections 6 and 7 introduce Petri Nets and how to model a game
and run tests using them. After that, Section 8 puts into practice
the ideas explained in previous sections in a small videogame,
and Section 9 describes some implementation details. Finally, this
paper ends with conclusions and future work.

2. Related work

With systems growth in size and complexity, tests are more dif-
ficult to design and develop. Testing all the functions of a program
becomes a challenging task. One of the clearest examples of this is
the development of online multiplayer games [3]. The massive
number of players make it impossible to predict and detect all
the bugs. Online games are also difficult to debug because of the
non-determinism and multi-process. Errors are hard to reproduce,
so automated testing is a strong tool which increases the chance of
finding errors and also improves developers efficiency.

Monkey testing is a black-box testing aimed at applications with
graphical user interfaces that has become popular due to its

http://dx.doi.org/10.1016/j.entcom.2016.08.002
1875-9521/� 2016 Published by Elsevier B.V.

⇑ Corresponding author.
E-mail addresses: jennhern@ucm.es (J. Hernández Bécares), lcostero@ucm.es

(L. Costero Valero), pedrop@fdi.ucm.es (P.P. Gómez Martín).

Entertainment Computing 18 (2017) 79–92

Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: ees .e lsevier .com/entcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.entcom.2016.08.002&domain=pdf
http://dx.doi.org/10.1016/j.entcom.2016.08.002
mailto: jennhern@ucm.es
mailto: lcostero@ucm.es
mailto:pedrop@fdi.ucm.es
http://dx.doi.org/10.1016/j.entcom.2016.08.002
http://www.sciencedirect.com/science/journal/18759521
http://ees.elsevier.com/entcom

inclusion in the Android Development Kit.1 It is based on the theo-
retical idea that a monkey randomly using a typewriter would even-
tually type out all of the Shakespeare’s writings. When applied to
testing, it consists on a random stream of input events that are
injected into the application in order to make it crash. Even though
this testing technique blindly executes the game without any partic-
ular goals, it is useful for detecting hidden bugs. This technique can
be improved if logs are analysed after each monkey test and an
evolutionary algorithm is fed with the conclusions in order to make
the test more and more destructive [4].

Due to the enormous market segmentation, again specially in
the Android market but more and more also in the iOS ecosystem,
automated tests are essential in order to check the application in
many different physical devices. In the cloud era, this has become
a service provided by companies devoted to offer cloud-based
development environments. For applications with graphical user
interfaces, this testing based on test cases requires specific frame-
works that check whether the GUI meets its specifications. Exam-
ples of such a software are Selenium (for web applications) and
Appium (for Android and iOS). They must cope with GUI changes
whilst maintaining the original test cases still valid, one of the
problems that we address in this paper for the videogames field.

In any case, unfortunately, all those testing approaches are
aimed at software, ignoring the fact that games are also maps,
levels and puzzles. Application-level tests usually need to be
adapted (or even completely recreated), even when levels suffer
small changes. We are not aware of any approach to carry out auto-
matic beta testing that pursues solving this issue as we describe in
this paper.

On the other hand, researchers have been trying for a long time
to create intelligent systems that can learn by demonstration how
to play a videogame using traces generated by expert players. This
is specially useful for those domains where creating a plausible
artificial intelligence is complex, as in real-time strategy games.

Once the traces have been analysed offline, those systems play
the game replicating or modifying the expert movements. Some-
times, an initial step is required, where experts annotate the traces
to incorporate extra useful domain knowledge.

A good introduction to this subject is provided in [5], where
efforts are described to design a generic recording system with
the purpose of annotating this traces later easily. Ontañón et al.
[6] shows how to adapt traces recorded in order to be able to
replay them afterwards. It also shows a description of how to
detect goals and subgoals of the traces recorded and how to use
Petri nets for modifying the traces.

Previous research in this learning from demonstration field was
our source of inspiration for the automatic beta testing presented
in this paper.

Next section introduces both hierarchy architectures and
component-based architectures, and also their differences and the
basics of message passing, which highlights why using the second
type is better and useful for us in our purpose of running auto-
mated tests.

3. Game architecture

Videogame development constitutes a big challenge today.
Broadly speaking, there are two different aspects that must be cov-
ered. The first one refers to the technological requirements, includ-
ing graphics, sound, physics simulation or network
communication, to name just a few. The second one is related to
the game itself, the playful characteristics that the software must

provide in order to be enjoyable. This is usually known as gameplay
or game mechanics and it is built with interactive elements.

Many of the main runtime components of a modern videogame
belong to the technological requirements and provide the basic
infrastructure needed for creating the game interactive simulation.
Only a small part is designed with a particular game in mind.

Apart from those runtime software elements, videogames need
resources such as 3D models, textures or sounds for providing the
interactive experience. Early videogames had all those resources
hard-coded, but today no one conceives resources in that form
and they are virtually always provided using external files. They
are collectively known as assets.

The separation between source code and assets constitutes the
key point of the data-driven architectures that allow software
reusability: the game aspect can be completely changed without
involving programmers.

But the videogame would continue to be exactly the same if the
logic or game rules were hard-coded into the source code, prevent-
ing software from being reused to create different games. This can
be solved if the game mechanics become assets themselves, or if
they are correctly isolated in the source code to be easily replace-
able. The term game engine is used to refer to ‘‘software that is
extensible and can be used as the foundation for many different
games without major modifications” [7]. Ideally, all the gameplay
would be specified throughout assets using external files, and the
game engine would be completely independent from the game
itself. Usually, game engines (such as Unity3D or Unreal Engine)
include tools used to create all the assets that the engine will load
and run.

What distinguishes one game from another are the game
mechanics, which emerge from game interactive elements such as
the player avatar abilities, the non-player characters (NPCs) or
any other element of the game logic with a certain behaviour.
Those interactive elements are known as entities or game objects
and they are responsible for creating the game experience. Essen-
tially, a game engine is an entities manager, and those entities
invoke the underlying subsystems to indicate the way they must
be drawn, when and how they should generate a sound, or how
they should react to specific events.

The classical way of programming the entities is using inheri-
tance. An abstract class is used as the base class for all the other
entity classes, and the game engine stores a list of instances of this
base class. In the main game loop, all the entities are updated
(using an abstract method) so they have the opportunity to react
to events and modify their internal state. Afterwards they are
drawn using a second abstract method. Entities’ behaviour
depends on the concrete implementation of those abstract
methods.

Depending on the game, the hierarchy can have multiple levels,
with intermediate classes that provide auxiliary methods used
from different subclasses. As an example, the old 1998 game,
Half-Life [8], had an entity hierarchy composed of 9 abstract classes
and 10 concrete classes shown in Fig. 1.

Although they were extensively used during the nineties and
early noughties, today entity hierarchies have fallen into disuse.
With videogames getting bigger and bigger, more features were
added to entities and many scalability problems arose. Specifically,
programmers had to decide how to split a class at each level, but
entities have different facets, depending, for example, on their
game logic, graphics representations or physics behaviour. Class
hierarchies are static, and making the wrong choice on how to split
a class in different levels can be fatal if designers suggest to add
new entities later. This situation can lead to problems such as mul-
tiple inheritance, which is not supported in many object-oriented
languages. Even if it was, we would most likely suffer from the dia-
mond problem.1 http://developer.android.com/tools/help/monkey.html.

80 J. Hernández Bécares et al. / Entertainment Computing 18 (2017) 79–92

http://developer.android.com/tools/help/monkey.html

Download English Version:

https://daneshyari.com/en/article/4942883

Download Persian Version:

https://daneshyari.com/article/4942883

Daneshyari.com

https://daneshyari.com/en/article/4942883
https://daneshyari.com/article/4942883
https://daneshyari.com

