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a b s t r a c t 

Appropriately identifying outlier data is a critical requirement in the decision-making process of many 

expert and intelligent systems deployed in a variety of fields including finance, medicine, and defense. 

Classical outlier detection schemes typically rely on the assumption that normal/background data of in- 

terest are distributed according to an assumed statistical model and search for data that deviate from 

that assumption. However, it is frequently the case that performance is reduced because the underlying 

distribution does not follow the assumed model. Manifold learning techniques offer improved perfor- 

mance by learning better models of the background but can be too computationally expensive due to the 

need to calculate a distance measure between all data points. Here, we study a general framework that 

allows manifold learning techniques to be used for unsupervised anomaly detection by reducing compu- 

tational expense via a uniform random sampling of a small fraction of the data. A background manifold is 

learned from the sample and then an out-of-sample extension is used to project unsampled data into the 

learned manifold space and construct an anomaly detection statistic based on the prediction error of the 

learned manifold. The method works well for unsupervised anomaly detection because, by definition, the 

ratio of anomalous to non-anomalous data points is small and the sampling will be dominated by back- 

ground points. However, a variety of parameters that affect detection performance are introduced so we 

use here a low-dimensional toy problem to investigate their effect on the performance of four learning 

algorithms (kernel PCA, two versions of diffusion map, and the Parzen density estimator). We then apply 

the methods to the detection of watercraft in an ensemble of 22 infrared maritime scenes where we find 

kernel PCA to be superior and show that it outperforms a commonly employed baseline algorithm. The 

framework is not limited to the tested image processing example and can be used for any unsupervised 

anomaly detection task. 

Published by Elsevier Ltd. 

1. Introduction 

We consider the problem of detecting points that are rare 

within a data set dominated by the presence of ordinary back- 

ground points. The goal is to assign unknown data to either a back- 

ground or anomaly class and the numerous algorithms that have 

been devised to handle this problem can be categorized as super- 

vised, semi-supervised, or unsupervised depending on how much 

information is available to the training algorithm. 

Supervised approaches require labeled training data for both 

classes. Models that maximize the difference between classes 

are then constructed; some common algorithms include neural 

networks ( Markou & Singh, 2003b ), Gaussian mixture models 

( Tarassenko, Nairac, Townsend, & Cowley, 1999 ), principal com- 

ponents analysis (for linearly separable data), and kernel sup- 
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port vector machines (SVMs) ( Schölkopf & Smola, 2002 ). Semi- 

supervised approaches, some examples of which can be found in 

Fujimaki, Yairi, and Machida (2005) and Bouchachia (2007) , only 

require labels for the background class. Unsupervised algorithms 

are the most generically applicable and are often based on mea- 

sures of similarity between data vectors. Examples include thresh- 

olding distances between neighboring data vectors ( Knorr, Ng, 

& Tucakov, 20 0 0 ), the local outlier factor ( Breunig, Kriegel, Ng, 

& Sander, 20 0 0 ), one-class SVMs ( Schölkopf, Williamson, Smola, 

Shawe-Taylor, & Platt, 20 0 0 ), and fuzzy c-means clustering 

( Bezdek, Ehrlich, & Full, 1984 ). Some reviews of the anomaly de- 

tection problem are provided in Markou and Singh (2003a) and 

Chandola, Banerjee, and Kumar (2009) . 

Supervised techniques are preferred over the unsupervised case 

whenever possible as we would expect the presence of training 

data to improve classification. We are not, however, always af- 

forded this luxury. This is the case in many image-based detec- 

tion scenarios where neither the background pixels nor the anoma- 

lous (often man-made) pixels are expected to be consistent be- 
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tween scenes. Variations in the type of background pixels as well 

as changes in lighting and scene viewing angle can invalidate a pri- 

ori assumptions about scene composition. Thus, we are motivated 

to develop unsupervised detection techniques. 

Kernel and spectral methods comprise a family of algo- 

rithms commonly used for clustering and classification. Of these, 

spectral methods in particular are also used for dimensional- 

ity reduction. Algorithms such as Laplacian eigenmaps ( Belkin & 

Niyogi, 2003 ), locally-linear embedding ( Roweis & Saul, 2000 ), 

Isomap ( Tenenbaum, de Silva, & Langford, 20 0 0 ), and diffusion 

map ( Coifman & Lafon, 2006 ) (which we discuss below) assume 

the observed high-dimensional data were actually generated by a 

lower-dimensional process and that the associations between the 

two can be learned. The goal of a manifold learning algorithm is 

therefore to map the original data onto a new coordinate system in 

which the classification problem is made simpler. These methods 

are similar in that they organize the data into clusters based on 

the eigenvalues and eigenvectors of a distance (adjacency) matrix 

calculated from the data. The data are viewed as nodes in a graph 

and the edges connecting the nodes are weighted by the similarity 

between the data as determined by a distance-measuring kernel. 

In recent years such methods have been used for the anal- 

ysis of hyperspectral images. For example, they have been used 

for classification ( Bachmann, Ainsworth, & Fusina, 2005; Chen, 

Crawford, & Ghosh, 2005 ), target detection ( Ziemann & Messinger, 

2015; Ziemann, Theiler, & Messinger, 2015 ), and change detection 

( Albano, Messinger, Schlamm, & Basener, 2011 ). Within the context 

of anomaly detection, Kwon and Nasrabadi (2005) introduced a 

kernelized version of the standard RX algorithm ( Reed & Yu, 1990 ) 

under the assumption that background and target would be de- 

scribed by Gaussian distributions in the high-dimensional feature 

space describing kernelized spectra. The TAD approach was intro- 

duced by Basener et al and found to perform well against a variety 

of benchmark algorithms ( Basener, Ientilucci, & Messinger, 2007 ). 

Messinger and Albano also considered the anomaly detection prob- 

lem by measuring the connectivity of individual pixels within a 

locally-constructed graph ( Messinger & Albano, 2011 ). 

The motivation for using such kernel-based or manifold- 

learning algorithms is that a background model that is more ap- 

propriate to the specifics of a given scene can be learned using 

data-driven techniques rather than assuming a statistical model a 

priori as is done with, for example, RX. Estimating the parame- 

ters governing an assumed statistical distribution and constructing 

decision surfaces as a function of the learned parameters would 

be preferred, but real-world data frequently fail to follow assumed 

distribution models and it has been shown (see, e.g., Theiler, Foy, 

& Fraser, 2007 ) that sensitivity to outliers may be reduced if the 

assumptions underlying the model are not met by the data. 

Adoption of such data-driven techniques is hampered, how- 

ever, by the expense of calculating an adjacency matrix. In 

Olson, Nichols, Michalowicz, and Bucholtz (2010) we proposed 

a statistically uniform “skeleton” subsampling of a hyperspectral 

scene to reduce the computational cost of building an adjacency 

matrix and performed a preliminary study of out-of-sample ex- 

tension ( Bengio et al., 2004; Lafon, Keller, & Coifman, 2006 ) as a 

means of developing a detection statistic for the remaining unsam- 

pled points. We performed an additional study of the subsampling 

method in Olson and Doster (2016) . Bachmann et al. (2005) have 

previously considered the use of subsampled pixel sets as a 

means of building a global manifold backbone against which lo- 

cal manifolds built from sub-segments of a scene could be aligned, 

but they found the method to be too computationally expen- 

sive for classification and did not consider the anomaly detection 

problem. Graph-based methods have been used previously in a 

semi-supervised manner for classification tasks ( Blum & Chawla, 

2001; Szummer & Jaakkola, 2002 ) and, more recently, Belkin and 

Niyogi (2002) and Belkin, Niyogi, and Sindhwani (2006) demon- 

strated that semi-supervised techniques can be used to learn a 

data manifold for classification. Although similar to our method, 

we are not aware of any work besides our own that extends these 

techniques to unsupervised anomaly detection in imagery. 

Building an adjacency matrix from a subset of the data is con- 

ceptually simple but enables application of the wide variety of 

data-driven learning techniques to the anomaly detection problem 

and offers the prospect of improved detection performance over 

classical techniques. The tradeoff is the introduction of a set of 

unique considerations relative to previous approaches. The follow- 

ing are a few of the most fundamental considerations: (1) What 

data-driven learning algorithm should be applied to the sampled 

skeleton subset?; (2) What fraction of the data set must be sam- 

pled in order to guarantee with some probability that all back- 

ground classes will be sufficiently sampled without over-sampling 

the anomalous class?; (3) What should the parameter settings 

be for a given learning algorithm and how are they affected by 

the size of the subsample?; (4) How stable is detection perfor- 

mance as a function of parameter settings and subsample size?; (5) 

How best to extend the learned model space to the out-of-sample 

points? 

In this work we primarily focus on considerations (1), (3), and 

(4). In particular we address consideration (1) by using kernel 

PCA ( Schölkopf, Smola, & Müller, 1998 ), two versions of diffusion 

map ( Coifman & Lafon, 2006 ), and the Parzen density estima- 

tor ( Parzen, 1962 ) to learn background models for panchromatic 

(not hyperspectral) images that have been tiled to form super- 

pixels. With all three techniques the basic idea is the same: learn 

a model based on previously acquired background data, project in 

new pixel data, and compute a measure of error between data 

and model as our detection statistic. The performance of the algo- 

rithms on a toy problem and real-world data set are quantified us- 

ing receiver operating characteristic (ROC) curves ( Kay, 1998 ) over 

a wide range of algorithm parameter settings (consideration 3) and 

over multiple skeleton samples (consideration 4). In all cases, good 

detection performance is obtained on the toy problem; however, 

kernel PCA outperforms the other learning algorithms on the real- 

world target detection task. We provide a more complete descrip- 

tion of each technique in Section 2 , describe the experiments and 

compare to an established algorithm in Section 3 , and discuss re- 

sults in Section 4 before concluding in Section 5 . 

2. Methods and motivation 

The idea behind any anomaly detection approach is to model 

the background distribution using either assumed physical princi- 

ples or by learning its description from the data. It is the latter 

route that we consider here. We begin with the set, �, of N pixel 

intensities x i ∈ R 

M , i = 1 · · · N that comprise an image. Most of the 

pixels are assumed to contain background information while only 

a very few ( < 1%) are assumed to contain a “target” point of inter- 

est. 

In general, we seek to find a function, f ( · ), that maps the x i 
into a new coordinate system where we can draw decision surfaces 

that more accurately separate anomaly from background. We don’t, 

however, know f ( · ) a priori and must form an estimate, ˆ f (·) , from 

our data. In this work we compare a number of methods, both lin- 

ear and nonlinear, for learning ˆ f (·) and compare their resulting de- 

tection performance (although we drop the ˆ f (·) from here on out 

and work with f ( · ) for notational parsimony). 

Given f ( · ), each datum can be represented in the new coordi- 

nate system by performing an analysis step θi = f (x i ) where θi ∈ 

R 

M . Conversely, we may model (synthesize) each datum as ˆ x i = 

f −1 (θi ) where we allow f −1 : R 

M → R 

m with m ≤ M . Of course, a 

unique inverse and 

ˆ x i = x i can only be guaranteed when m = M. In 
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