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a b s t r a c t 

Learning from imbalanced datasets is a frequent but challenging task for standard classification algo- 

rithms. Although there are different strategies to address this problem, methods that generate artificial 

data for the minority class constitute a more general approach compared to algorithmic modifications. 

Standard oversampling methods are variations of the SMOTE algorithm, which generates synthetic sam- 

ples along the line segment that joins minority class samples. Therefore, these approaches are based on 

local information, rather on the overall minority class distribution. Contrary to these algorithms, in this 

paper the conditional version of Generative Adversarial Networks (cGAN) is used to approximate the true 

data distribution and generate data for the minority class of various imbalanced datasets. The perfor- 

mance of cGAN is compared against multiple standard oversampling algorithms. We present empirical 

results that show a significant improvement in the quality of the generated data when cGAN is used as 

an oversampling algorithm. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Learning from imbalanced data is an important problem for 

the research community as well as the industry practitioners 

( Chawla, Japkowicz, & Kolcz, 2003 ). An imbalanced learning prob- 

lem can be defined as a learning problem from a binary or 

multiple-class dataset where the number of instances for one of 

the classes, called the majority class, is significantly higher than 

the number of instances for the rest of the classes, called the mi- 

nority classes ( Chawla, Bowyer, Hall, & Kegelmeyer, 2002 ). The Im- 

balance Ratio (IR), defined as the ratio between the majority class 

and each of the minority classes, varies for different applications 

and for binary problems values between 100 and 10 0.0 0 0 have 

been observed ( Chawla et al., 2002; Barua, Islam, Yao, & Murase, 

2014 ). 

Imbalanced data are a characteristic of multiple real-world ap- 

plications such as medical diagnosis, information retrieval systems, 

fraud detection, detection of oil spills in radar images, direct mar- 

keting, automatic classification of land use and land cover in re- 

mote sensing images, detection of rare particles in experimental 

high-energy physics, telecommunications management and bioin- 

formatics ( Akbani, Kwek, & Japkowicz, 2004; He & Garcia, 2009; 

Clearwater & Stern, 1991; Graves et al., 2016; Verbeke, Dejaeger, 
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Martens, Hur, & Baesens, 2012; Zhao, Li, Chen, & Aihara, 2008 ). 

Standard learning methods perform poorly in imbalanced data sets 

as they induce a bias in favor of the majority class. Specifically, 

during the training of a standard classification method the mi- 

nority classes contribute less to the minimization of the objective 

function. Also the distinction between noisy and minority class 

instances is often difficult. An important observation is that in 

many of these applications the misclassification cost of the mi- 

nority classes is often higher than the misclassification cost of the 

majority class ( Domingos, 1999; Ting, 2002 ). Therefore the meth- 

ods that address the class imbalance problem aim to increase the 

classification accuracy for the minority classes. 

There are three main approaches to deal with the class imbal- 

anced problem ( Fernández, López, Galar, Jesus, & Herrera, 2013 ). 

The first is the modification/creation of algorithms that reinforce 

the learning towards the minority class. The second approach is 

the application of cost-sensitive methods at the data or algorithmic 

level in order to minimize higher cost errors. The third and more 

general approach is the modification at the data level by rebalanc- 

ing the class distribution through under-sampling, over-sampling 

or hybrid methods. 

Our focus in this paper is oversampling techniques, which result 

in the generation of artificial data for the minority class. Standard 

oversampling methods are inspired by Synthetic Minority Over- 

sampling Technique (SMOTE) algorithm ( Chawla et al., 2002 ), gen- 

erating synthetic samples along the line segment that joins minor- 

ity class samples. A direct approach to the data generation process 
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would be the use of a generative model that captures the actual 

data distribution. Generative Adversarial Networks (GAN) is a re- 

cent method that uses neural networks to create generative mod- 

els ( Goodfellow et al., 2014 ). A conditional Generative Adversarial 

Network (cGAN) extends the GAN model by conditioning the train- 

ing procedure on external information ( Mirza & Osindero, 2014 ). In 

this paper we apply a cGAN on binary class imbalanced datasets, 

where the cGAN conditioning on external information are the class 

labels of the imbalanced datasets. The final generative model is 

used to create artificial data for the minority class i.e. the gener- 

ator corresponds to an oversampling algorithm. 

For the evaluation of cGAN as an oversampling method an ex- 

perimental analysis is performed, based on 12 publicly available 

datasets from Machine Learning Repository. In order to test it on 

a wide range of IRs, additional datasets are created by undersam- 

pling the minority class of these 12 datasets as well as by adding 

simulated datasets with appropriate characteristics. Then the pro- 

posed method is compared to Random Oversampling, SMOTE al- 

gorithm, Borderline SMOTE ( Han, Wang, & Mao, 2005 ), ADASYN 

( He, Bai, Garcia, & Li, 2008 ) and Cluster-SMOTE ( Cieslak, Chawla, 

& Striegel, 2006 ). For the classification of the binary class data five 

classifiers and three evaluation metrics are applied. 

The sections in the paper are organized as follows. In Section 2 , 

an overview of related previous works and existing sampling 

methods is given. In Section 3 , the theory behind GANs is 

described. Section 4 presents the proposed method in detail. 

Section 5 presents the research methodology. In Section 6 the ex- 

perimental results are presented while conclusions are provided in 

Section 7 . 

2. Related work 

Considering that our focus is the modification on the data level, 

and particularly the generation of artificial data, we provide a short 

review of the oversampling methods. A review of the other meth- 

ods can be found in Galar, Fernández, Barrenechea, Bustince, and 

Herrera (2012) and Chawla (2005) . Oversampling methods gener- 

ate synthetic examples for the minority class and add them to the 

training set. A simple approach, known as Random Oversampling, 

creates new data by copying random minority class examples. The 

drawback of this approach is that the exact replication of training 

examples can lead to overfitting since the classifier is exposed to 

the same information. 

An alternative approach that aims to avoid this problem is 

SMOTE. Synthetic data are generated along the line segment that 

joins minority class samples. SMOTE has the disadvantage that, 

since the separation between majority and minority class clusters 

is not often clear, noisy samples may be generated ( He & Gar- 

cia, 2009 ). To avoid this scenario various modifications of SMOTE 

have been proposed. SMOTE + Edited Nearest Neighbor ( Batista, 

Prati, & Monard, 2004 ) combination applies the edited near- 

est neighbor rule ( Wilson, 1972 ) after the generation of artifi- 

cial examples through SMOTE to remove any misclassified in- 

stances, based on the classification by its three nearest neighbors. 

Safe-Level SMOTE ( Bunkhumpornpat, Sinapiromsaran, & Lursin- 

sap, 2009 ) modifies the SMOTE algorithm by applying a weight 

degree, the safe level, in the data generation process. Borderline- 

SMOTE ( Han et al., 2005 ), MWMOTE (Majority Weighted Minor- 

ity Oversampling Technique for Imbalanced Data Set Learning) 

( Barua et al., 2014 ), ADASYN ( He et al., 2008 ) and its variation Ker- 

nelADASYN ( Tang & He 2015 ) aim to avoid the generation of noisy 

samples by identifying the borderline instances of the majority and 

minority classes that in turn are used to identify the informative 

minority class samples. 

The methods above address the problem of between-class im- 

balance ( Nekooeimehr & Lai-Yuen, 2016 ). Another type of prob- 

lem is the within-class imbalance ( Nekooeimehr & Lai-Yuen, 2016; 

Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 2012; Cieslak & 

Chawla, 2008; Jo & Japkowicz, 2004 ) i.e. when sparse or dense 

subclusters of minority or majority instances exist. Clustering 

based oversampling methods that deal with the between-class 

imbalance problem have recently been proposed. These methods 

are initially partitioning the input space and then apply sam- 

pling methods in order to adjust the size of the various clusters. 

Cluster-SMOTE applies the k-means algorithm and then generates 

artificial data by applying SMOTE in the clusters. Similarly DB- 

SMOTE ( Bunkhumpornpat et al., 2012 ) uses the DB-SCAN algorithm 

to discover arbitrarily shaped clusters and generates synthetic in- 

stances along a shortest path from each minority class instance 

to a pseudo-centroid of the cluster. A-SUWO ( Nekooeimehr & Lai- 

Yuen, 2016 ) creates clusters of the minority class instances with 

a size, which is determined using cross validation and generates 

synthetic instances based on a proposed weighting system. SOMO 

( Douzas & Bacao, 2017 ) creates a two dimensional representation 

of the input space and based on it, applies the SMOTE procedure 

to generate intracluster and intercluster synthetic data that pre- 

serve the underlying manifold structure. Other types of oversam- 

pling approaches are based on ensemble methods ( Wang, Minku, & 

Yao, 2015; Sun et al., 2015 ) such as SMOTEBoost ( Chawla, Lazare- 

vic, Hall, & Bowyer, 2003 ), DataBoost-IM ( Guo & Viktor, 2004 ). 

3. GAN and cGAN algorithms 

In this section, we provide a summary of the GAN and cGAN 

frameworks following closely the notation in Goodfellow et al. 

(2014) and Gauthier (2015) . The GAN is based on the idea of com- 

petition, in which a generator G and a discriminator D are trying 

to outsmart each other. The objective of the generator is to confuse 

the discriminator. The objective of the discriminator is to distin- 

guish the instances coming from the generator and the instances 

coming from the original dataset. If the discriminator is able to 

identify easily the instances coming from the generator then, rel- 

ative to its discrimination ability, the generator is producing low 

quality data. We can look at the GAN setup as a training envi- 

ronment for the generator where the discriminator, while also im- 

proving, is providing feedback about the quality of the generated 

instances, forcing the generator to increase its performance. 

More formally, the generative model G, defined as G : Z → X 

where Z is the noise space of arbitrary dimension d Z that cor- 

responds to a hyperparameter and X is the data space, aims to 

capture the data distribution. The discriminative model, defined 

as D : X → [0, 1], estimates the probability that a sample came 

from the data distribution rather than G. These two models, which 

are both multilayer perceptrons, compete in a two-player minmax 

game with value function: 

min G max D V ( D, G ) = E D + E G 

where: 

E D = E x ∼p data ( x ) [ logD ( x ) ] 

E G = E z∼p z ( z ) [ log ( 1 − D ( G ( z ) ) ) ] (1) 

The x ∈ X values are sampled from the data distribution p data ( x ) 

and the z ∈ Z values are sampled from the noise distribution p z ( z ). 

The training procedure consists of alternating between k optimiz- 

ing steps for D and one optimizing step for G by applying SGD. 

Therefore during training, D is optimized to correctly classify train- 

ing data and samples generated from G, assigning 1 and 0 respec- 

tively. On the other hand the generator is optimized to confuse the 

discriminator by assigning the label 1 to samples generated from 

G. The unique solution of this adversarial game corresponds to G 

recovering the data distribution and D equal to ½ for any input 

( Goodfellow et al., 2014 ). 
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