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a b s t r a c t 

This paper deals with the topic of learning from unlabeled or noisy-labeled data in the context of a clas- 

sification problem. In the classification problem the outcome yields one of a discrete set of values thus, 

assumptions on them could be established to obtain the most likely prediction model at the training 

stage . In this paper, a novel case-based model selection method is proposed, which combines hypothesis 

testing from a discrete set of expected outcomes and feature extraction within a cross-validated classifi- 

cation stage. This wrapper-type procedure acts on fully-observable variables under hypothesis-testing and 

improves the classification accuracy on the test set, or keeps its performance at least at the level of the 

statistical classifier. The model selection strategy in the cross validation loop allows building an ensemble 

classifier that could improve the performance of any expert and intelligence system, particularly on small 

sample-size datasets. Experiments were carried out on several databases yielding a clear improvement 

on the baseline, i.e., SPECT dataset Acc = 86 . 35 ± 1 . 51 , with Sen = 91 . 10 ± 2 . 77 , and Spe = 81 . 11 ± 1 . 61 . 

In addition, the CV error estimate for the classifier under our approach was found to be an almost unbi- 

ased estimate (as the baseline approach) of the true error that the classifier would incur on independent 

data. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Statistical learning theory (SLT) is a recently developed area in 

statistics that has been successfully applied to several fields in- 

cluding machine learning and artificial intelligence ( Hastie, Tibshi- 

rani, & Friedman, 2001; James, Witten, Hastie, & Tibshirani, 2013; 

Vapnik, 1998 ). From least squares methods for linear regression, 

proposed in the very beginning of the nineteenth century, to the 

novel advances in machine learning such as random forests, Sup- 

port Vector Machines (SVM), bagging or boosting in the early 90s 

( Breiman, Friedman, Olshen, & Stone, 1984; Hastie et al., 2001; 

Vapnik, 20 0 0 ), SLT has become a new paradigm focusing on su- 

pervised and unsupervised modeling and prediction, i.e., the de- 
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velopment of Computer-Aided Diagnosis (CAD) systems ( Gur et al., 

2004; Illán et al., 2010 ; Padilla, Lopez, Gorriz, & 2012 ; Suzuki, Li, 

Sone, & Doi, 2005 ). On the other hand, decision theory is the appli- 

cation of statistical hypothesis testing to the detection of signals in 

noise ( Kay, 1993 ). Because under hypothesis testing we are essen- 

tially attempting to determine a desired pattern or to classify it as 

one of a set of possible patterns, it is also referred to as a pattern 

recognition or classification problem ( Fukunaga, 1990 ). 

The most common form of machine learning is the supervised 

learning ( LeCun, Bengio, & Hinton, 2015 ). In this case, a quanti- 

tative response Y k and several predictors { X k } for k = 1 , . . . , p are 

observed, and the aim is to discover the relationship among them, 

which can be written in a general form Y = f (X ) + ε, where f is 

an unknown function of the predictors and ε is a random error 

term. In this way, supervised learning refers to a set of approaches 

for estimating f based on a set of known predictors and responses 

( James et al., 2013 ). When the supervised learning does not involve 

predicting a quantitative value but a qualitative response or class , 

this is known as a classification problem. In the latter case, once a 
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Fig. 1. Diagram of the model selection approach (up) versus the common super- 

vised FE learning approach (bottom) on the training set. 

final classifier ˆ f has been estimated, it can be used to predict the 

classes of the test samples. 

Another field of research that have drawn the attention in the 

machine learning community is the semi-supervised learning (SSL) 

( Chapelle, Scholkopf and Zien, 2006 ). SSL belongs to the supervised 

category but in this case we have access to an additional unlabeled 

sample { X p+ j } for j = 1 , . . . , m or samples with a few noisy ini- 

tial labels ( Lu, Gao, Wang, Wen, & Huang, 2015 ). In general, the 

solution to this subcategory is broadly based on two approaches: 

avoiding the use of unlabeled data or treating unobserved Y vari- 

ables as a latent-class variables in the estimation of the system pa- 

rameters ( Chapelle et al., 2006 ). In recent years, several feature se- 

lection methods have been proposed based on Information Theory, 

filter (the one used in this paper as a baseline), embedded and 

wrapper methods ( Guyon, Gunn, Nikravesh, Zadeh, & Eds, 2006 ) in 

fully-supervised data ( Brown, Pocock, Zhao, & Luján, 2012 ). Under 

these approaches the features X are selected by quantifying the in- 

formation that they share with the class variable Y . However, on 

partially-labeled datasets surrogate variables can be introduced to 

derive ranking equivalent approaches using all available informa- 

tion in an entirely classifier-independent and inference-free fashion 

( Sechidis, 2015 ). Some surrogate approaches assume the label of 

the unobservable variable Y and are found to be valid and informed 

to perform hypothesis testing for feature selection ( Sechidis, Calvo, 

& Brown, 2014 ). 

1.1. General outline 

Before estimating the classifier f , relevant and non-redundant 

features are usually extracted from the raw data to facilitate the 

subsequent learning and generalization steps ( Varol, Gaonkar, Erus, 

Schultz, & Davatzikos, 2012 ). Based on the previous ideas and fea- 

ture extraction (FE) schemes, we investigate the possibility of using 

a semi-supervised model selection algorithm based on hypothesis 

testing applied to the responses or outcomes. 

In Fig. 1 , we show the differences between our methodology 

(up) and the baseline (bottom) at the training stage to derive the 

classifier ˆ f . Learning from data samples involves, at this stage, 

model fitting by the use of observed variables and their labels 

(outcomes) that are grouped into two groups, the training and the 

validation sets. The use of a validation set at the training stage al- 

lows to select the classifier whose actual risk S ( x ) is minimal, i.e., 

by parameter tuning. Finally, a test set can be employed only to as- 

sess the performance (generalization) of a fully-specified classifier 

and to avoid overfitting ( Ripley, 1996 ). 

FE may be applied to surrogate variables, shown in the latter 

figure as the class-information Y 0, 1 , within the Cross Validation 

(CV)-loop to obtain extended feature datasets by hypothesizing on 

the unknown outcomes of the validation patterns. The statistical 

consequences in each hypothesis could be analyzed in terms of 

probability within a Bayesian framework as proposed in this paper 

(the likelihood ratio test (LRT) block in Fig. 1 ), that is, in a classifier- 

independent fashion unlike embedded or wrapper methods. Other 

possibility is to evaluate the classifier configuration derived from 

the feature datasets, i.e., probability map of the support vectors 

( Padilla, et al., 2012 ). The influence of the validation pattern on the 

prediction models, i.e., a trained SVM, will depend on the relevance 

of the features that represent the validation samples in the feature 

space ( Chapelle et al., 2006 ). Assuming the feature to be relevant, 

a decision function can be formulated in terms of class-conditional 

probabilities following the Neyman–Pearson (NP) lemma. The re- 

sulting LRT is similar to the one achieved by the classical linear 

discriminant (LDA) or quadratic DA analysis, but evaluated on two 

different f eature datasets. Finally, the overall system can be seen 

as a wrapper-type method since although the feature selection is 

classifier-independent the system builds the final ensemble clas- 

sifier based on a maximization process on several feature subsets 

( Martinez-Murcia, Górriz, & Ramírez, 1999 ). 

This paper is organized as follows. In Section 2 , a background 

to the NP approach to signal detection is provided. In the follow- 

ing Section 3 classical FE methods, such as Least Squares (LS) and 

Partial LS methods, are applied on semi-supervised datasets to ob- 

tain two feature extractions of the training database. As a result, 

hypothesis testing theory is employed to provide a novel frame- 

work for model selection as a part of the general tools of assessing 

statistical accuracy, such as CV or Bootstrap methods ( Varma & Si- 

mon, 2006 ). The resulting LRT is the optimal tradeoff between type 

I & I I errors which is employed for FE under certain assumptions. 

The set of assumptions comprises Gaussian modeling for condi- 

tional probabilities, feature relevance, and statistical independence 

among feature components. Finally, in Section 5 , a fully experimen- 

tal framework is provided to demonstrate the benefits of the pro- 

posed approach acting on baseline filter-based approaches, i.e., us- 

ing LS and PLS FE methods and a SVM learning algorithm that 

minimizes the leave-one-out (LOO)-CV error. In Section 6 , conclu- 

sions are drawn. 

2. NP approach to signal detection: A background 

Assume we observe a training set of random variables Z = { X ∈ 

R 

p , Y ∈ R } . The realization of the outcome variable Y is modeled by 

normal distributions N (μi , σi ) , with mean μi and variance σ i for 

i = 1 , . . . , C, where C denotes the number of outcomes or classes. 

In general, we must therefore determine if μ = μi for a single ob- 

servation under a multiple C -ary hypothesis testing using a NP cri- 

terion. However, this is hardly used in practice, and the minimum 

probability error criterion is used instead ( Kay, 1993 ). For a binary 

problem the test is defined as: 

H 0 : μ = 0 ; H 1 : μ = 1 (1) 

where every possible value of μ is thought as one of two compet- 

ing hypotheses. In terms of the observed variable x , the hypothesis 

can be reformulated as: 

H 0 : x ;Y = 0 H 1 : x ;Y = 1 (2) 

Thus, we are implicitly assuming that the hypothesis testing on the 

unobserved class Y can be reformulated in terms of the observed 

pattern value x , via the joint pdf, p ( X , Y ) or an unknown func- 

tion, f : X �→ Y , an issue that is common in signal detection problems 
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