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a b s t r a c t 

In this paper, we provide an experimental study for two unsupervised processes, namely, the random ini- 

tialization and the Hebbian learning, which can be used to determine the input weights in Single-hidden 

Layer Feedforward Neural Networks (SLFNs). In addition, a fusion technique that combines the two fea- 

ture spaces is proposed. Experiments are conducted on six publicly available facial image datasets. Exper- 

imental results show that the proposed fusion technique can improve the performance of Hebbian and 

random feature spaces when they achieve similar performance. In the cases where the difference in per- 

formance of the two feature spaces is high, the proposed fusion scheme preserves the power of the most 

discriminating one and outperforms the average fused feature space. The experimental results show that 

there is a trade-off between the generalization of the Hebbian feature space and the low computational 

cost of the random one. 

© 2017 Elsevier Ltd. All rights reserved. 

1. INTRODUCTION 

Single-hidden layer feedforward neural networks (SLFNs) have 

attracted much attention and have been successfully applied in 

many data mining techniques such as regression ( Wang, Er, & Han, 

2015 ), classification ( Huang, Zhou, Ding, & Zhang, 2012 ) and sub- 

space learning ( Iosifidis, 2015 ). This is mainly due to their abil- 

ity to learn an arbitrary continuous function and classify disjoint 

regions, in addition to their good generalization ability in unseen 

data. Several effective ways have been proposed for training such 

neural networks, with Backpropagation (BP) ( Rumelhart, Hinton, 

& Williams, 1986 ) being the most widely used so far. According 

to this approach, the network’s parameters are randomly initial- 

ized and an iterative process is applied to update them by back- 

propagating the prediction of the network error on a set of training 

samples followed by the corresponding target vectors. 

Another approach that has been proposed in early 1990’s 

( Broomhead & Lowe, 1988; Chen, 1996; Chen, Cowan, & Grant, 

1991; Park & Sandberg, 1991; Schmidt, Kraaijveld, & Duin, 1992 ) 

and has rejuvenated in the middle 20 0 0’s ( Huang, Zhu, & Siew, 

2004 ), under the term Extreme Learning Machine (ELM), sets the 

assumption that the learning processes adopted for the determi- 

nation of the hidden layer and the output weights need not be 
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connected. In addition, it is assumed that the network’s hidden 

layer neurons can be randomly assigned, this way defining a ran- 

dom (nonlinear) mapping of the input space to a new (usually 

high-dimensional) feature space. By using a large number of (in- 

dependent) hidden layer weights, it is expected that the problem 

to be solved is mapped to a linear problem in the new feature 

space and, thus, linear techniques such as the mean square estima- 

tion can be employed for the determination of the network’s out- 

put weights ( Lin, Liu, Fang, & Xu, 2015; Liu, Lin, Fang, & Xu, 2015; 

Schmidt et al., 1992; Schwenker, Kestler, & Palm, 2001 ). The fact 

that the network’s hidden and output weights are determined in- 

dependently has a number of advantages that can be exploited e.g. 

for facilitating parallel/distributed systems implementation ( Aziz, 

2014 ). In addition, it has been shown that it can provide a good 

performance in many medium-scale classification problems ( Huang 

et al., 2012; Iosifidis, Tefas, & Pitas, 2015a ). 

The main limitation in ELM networks is due to the fact that 

they require a large number of neurons in the hidden layer (which 

is usually comparable to the number of training data) to achieve 

a good performance ( Iosifidis, Tefas, & Pitas, 2017 ). In fact, by in- 

creasing the number of hidden neurons, the performance of ELMs 

can significantly improve whilst its generalization ability is weak- 

ened due to over-fitting. Furthermore, kernel versions of ELM net- 

works can be obtained by letting the number of hidden layer neu- 

rons go to infinity ( Iosifidis, Tefas, & Pitas, 2015b; Williams, 1998 ). 

While this approach can be adopted in small and medium-scale 

problems, it is infeasible in large-scale problems, due to dramatic 

growth in the computational cost. On the other hand, the adop- 
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tion of a relatively small number of hidden layer weights that can 

summarize/highlight the characteristics of the training data can 

overcome this limitation. This can be done e.g. by applying clus- 

tering on the training samples in order to determine the center 

vectors of Radial Basis Function (RBF) networks ( Schwenker et al., 

2001 ), or by applying eigen decomposition to the kernel matrix 

formed by the training data and keeping the eigenvectors corre- 

sponding to the largest eigenvectors ( Iosifidis et al., 2015b ). Addi- 

tionally, as it was shown in ( Kannappan, Tamilarasi, & Papageor- 

giou, 2011; Papakostas, Koulouriotis, Polydoros, & Tourassis, 2012 ), 

linear and non-linear Hebbian learning methods can be employed 

in the training of Fuzzy Cognitive Maps (FCM) classifiers. Similarly, 

Hebbian learning can be used for unsupervised training of neural 

networks ( Hebb, 2002 ) or as an alternative to Principal Component 

Analysis (PCA) for feature selection ( Seret, Maldonado, & Baesens, 

2015 ). 

In this paper, we provide an extensive experimental study that 

uses both random and unsupervised learning approaches for the 

initialization of the hidden layer weights of a single-hidden layer 

feedforward neural network. For unsupervised learning of the hid- 

den layer weights, we employ Hebbian learning algorithms that are 

able to reveal the principal subspace of the training data. We ob- 

serve that both approaches have their advantages and disadvan- 

tages. Random hidden layer weights initialization is cheap, but the 

number of hidden layer neurons required for achieving good per- 

formance is high. On the other hand, Hebbian learning has a higher 

training computational cost, but the number of neurons needed 

to achieve a satisfactory performance is usually smaller than the 

random selection approach. As described in ( Iosifidis et al., 2015a ), 

the determination of the network output weights in ELM networks 

can be considered as a subspace learning problem. We therefore 

formulate the network’s output weights learning problem as a bi- 

fold subspace learning problem, where the goal is to determine the 

optimal linear combination of the data representations in the two 

feature spaces, namely, those obtained by applying random and 

Hebbian hidden layer weights initialization. 

In summary, the contributions of this paper are: 

We provide an extensive experimental study comparing ran- 

dom selection and biologically inspired unsupervised learning 

approaches for the determination of the input weights in SLFN 

networks. To the best of our knowledge, such a direct compari- 

son of these two approaches is missing from the related litera- 

ture. 

We propose a new fusion scheme for combining these two ap- 

proaches that leads to more robust solutions, when compared 

to each of them independently. 

The remainder of the paper is structured as follows. In 

Section 2 we briefly describe SLFN networks, random-SLFN net- 

works, Hebbian learning and Hebbian-SLFN networks. In Section 3 , 

we describe a novel fusion scheme that is able to determine 

an optimal linear combination of the two learning approaches. 

Section 4 describes the experiments conducted and Section 5 con- 

cludes the paper. 

2. SLFN networks 

Let us denote by x i ∈ R 

D , i = 1 , . . . , N, a set of training samples 

followed by the corresponding target vectors t i ∈ R 

C . For classifi- 

cation problems formed by C classes, the elements of the target 

vectors are set equal to t i j = 1 if x i belongs to class j and t i j = −1 

if x i belongs to a class k � = j ( Iosifidis, 2015 ). 

A SLFN network that can be used in order to learn the map- 

ping function x i → t i is formed by D input neurons ( D is equal to 

the dimensionality of the input data), L hidden neurons and C out- 

put neurons ( C is equal to the dimensionality of the target vectors) 

neurons. The number L of hidden layer neurons is a parameter of 

the network. Given an activation function g ( w j , b j , x i ) for the net- 

work’s hidden layer neurons, where w j ∈ R 

D and b j ∈ R denote the 

weight vector and the bias value of the j th hidden neuron respec- 

tively, and using a linear activation function for the network’s out- 

put layer neurons, the output of the network for an input vector x i 
is given by o i = [ o i 1 , . . . , o iC ] 

T , where: 

o i j = v T j h i + β j , j = 1 , . . . , C, (1) 

where v j ∈ R 

L and β j are the j th output weight and the corre- 

sponding bias value and h i ∈ R 

L is the representation of x i in the 

feature space determined by the network’s hidden layer outputs: 

h i = [ g( w 1 , b 1 , x i ) , . . . , g( w L , b L , x i )] T . (2) 

Theoretically, a conventional SLFN network with L hidden neu- 

rons is capable of learning L distinct observations in the training 

set. In such a SLFN network, input weights and the bias of the hid- 

den neurons may be chosen randomly ( Huang, Chen, & Siew, 2006; 

Lin et al., 2015; Liu et al., 2015 ). The network’s output weights can 

be also estimated using a gradient-descent method or Least Mean 

Squares (LMS) algorithm. 

2.1. Random-SLFN networks 

Random-SLFN is a generalized form of SLFNs in which randomly 

generated weights of the hidden layer are not tuned ( Huang et al., 

2004 ). In fact, the output of the hidden layer in random-SLFNs can 

be considered as the random projection of the input followed by a 

nonlinearity. By exploiting a large number of hidden layer neurons, 

the random selection of the hidden layer weights corresponds to a 

nonlinear mapping of the input space to a high-dimensional fea- 

ture space (the so-called ELM space). 

After obtaining the data representations in this high- 

dimensional space, the weights between the hidden and the 

output layers can be found by a linear solution such as least 

square estimation. That is, by assuming that the network outputs 

for the training data are equal to the corresponding target vectors, 

i.e. o i = t i and that the output layer bias values β j are equal to 

zero, the network output weights V ∈ R 

L ×C are calculated by: 

V = H 

† T 

T , (3) 

where H ∈ R 

L ×N is a matrix containing the training data represen- 

tations in the random space, T ∈ R 

C×N is a matrix containing the 

target vectors and H 

† = (HH 

T ) −1 H is the Moore-Penrose pseudo- 

inverse of H . Due to the fact that matrix H † cannot be sometimes 

accurately calculated (when L > N ) and in order to avoid overfit- 

ting, a regularization term can be added in (3) ( Deng, Zheng, & 

Chen, 2009 ), i.e.: 

V = 

(
1 

c 
I + HH 

T 
)−1 

HT 

T (4) 

2.2. Principal subspace learning and Hebbian rule 

The synapses between input and hidden layers in random- 

SLFNs are defined as (randomly determined) static weights. Though 

this assumption can lead to a faster and usually less costly ini- 

tialization process and it has been claimed that it is biologi- 

cally plausible ( Huang, 2014 ), it requires a large number of (inde- 

pendent) hidden layer weights. Other biologically plausible learn- 

ing approaches concerning dynamical cognitive systems state that 

synapses plasticity plays the main role in learning by adjusting the 

weights over time. The first hypothesis about the synapses plastic- 

ity was proposed by Hebb (2002) and states that the weight be- 

tween neurons A and B must get strengthened if A participates in 
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