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a b s t r a c t 

The traditional CCA and 2D-CCA algorithms are unsupervised multiple feature extraction methods. Hence, 

introducing the supervised information of samples into these methods should be able to promote the 

classification performance. In this paper, a novel method is proposed to carry out the multiple feature ex- 

traction for classification, called two-dimensional supervised canonical correlation analysis (2D-SCCA), in 

which the supervised information is added to the criterion function. Then, by analyzing the relationship 

between GCCA and 2D-SCCA, another feature extraction method called multiple-rank supervised canoni- 

cal correlation analysis (MSCCA) is also developed. Different from 2D-SCCA, in MSCCA k pairs left trans- 

forms and k pairs right transforms are sought to maximize the correlation. The convergence behavior and 

computational complexity of the algorithms are analyzed. Experimental results on real-world databases 

demonstrate the viability of the formulation, they also show that the classification results of our methods 

are higher than the other’s and the computing time is competitive. In this manner, the proposed meth- 

ods proved to be the competitive multiple feature extraction and classification methods. As such, the two 

methods may well help to improve image recognition tasks, which are essential in many advanced expert 

and intelligent systems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

High-dimensional data can be found in many applications, such 

as face recognition, image analysis, text classification, web page 

classification, and so on. Processing high-dimensional data needs 

a lot of memory and time, moreover, using high-dimensional data 

directly may lead to the curse of dimensionality. To overcome these 

problems, feature extraction strategy is used. The major target of 

feature extraction is to find the meaningful low-dimensional rep- 

resentations of high-dimensional data such that the inherent data 

structures and relations are revealed ( Yuan & Sun, 2014 ). The fa- 

mous feature extraction techniques include principal component 

analysis (PCA) ( Truk & Pentland, 1991 ), linear discriminant analysis 

(LDA) ( Belhumeur, Hespanha, & Kriegman, 1997 ), locality preserv- 

ing projections (LPP) ( He & Niyogi, 2003 ), etc. 

All above methods extract features from original high- 

dimensional data rather than multiset data. Hence, they are not 

suitable for multiple feature extraction. Canonical correlation anal- 

ysis (CCA) ( Hotelling, 1936 ) can measure the inter-correlation be- 
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tween two variable sets, and recently, it is exploited for image 

recognition. Sun et al. proposed a new CCA ( Sun, Zeng, Liu, Heng, 

& Xia, 2005 ) method, which can extract canonical correlation fea- 

tures from two sets of variables. For easy classification, the dis- 

criminant version of CCA was further developed, called generalized 

CCA (GCCA) ( Sun, Liu, Heng, & Xia, 2005 ). The two papers above 

first extract two groups of low-dimensional feature vectors from 

two high-dimensional data sets, then fuse them using feature fu- 

sion method. There are two famous feature fusion methods: se- 

rial feature fusion and parallel feature fusion. Serial feature fusion 

groups two sets of feature vectors into one union-vector, while par- 

allel feature fusion combines two sets of feature vectors by a com- 

plex vector. Since CCA is a linear subspace learning method, it fails 

to discover the nonlinear relationship. In order to overcome this 

problem, kernel CCA (KCCA) ( Hardoon, Szedmak, & Shawe-Taylor, 

2004; Melzer, Reiter, & Bischof, 2003 ) and locality preserving CCA 

(LPCCA) ( Sun & Chen, 2007 ) were proposed. KCCA uses the ker- 

nel trick to find the nonlinear relation, while LPCCA uses local in- 

formation to discover the local manifold structure of data. Sparse 

CCA ( Chu, Liao, Ng, & Zhang, 2013 ) seeks a sparse solution of CCA 

from a solution subset. In order to decrease the computing time, 

complete canonical correlation analysis (C3A) ( Xing, Wang, yan, & 

Lv, 2016 ) first reformulates the traditional CCA, then transforms the 
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singular generalized eigensystem computation of CCA into two sta- 

ble eigenvalue decomposition problems. In 2005, Francis et al. pre- 

sented a probabilistic interpretation of CCA ( Bach & Jordan, 2005 ), 

which enables the use of local CCA models as components of a 

larger probabilistic model, and suggests generalizations to mem- 

bers of the exponential family other than the Gaussian distribu- 

tion. E-CCA ( Arandjelovic, 2014 ) is an extension of CCA, which aims 

to extract the 20 most similar modes of variability within two 

sets. CCA also has been applied in many fields, for instance, sta- 

tistical analysis ( Anderson, 2003 ), text mining ( Vinokourov, Shawe- 

Taylor, & Cristianini, 2003 ), facial expression recognition ( Zheng, 

Zhou, Zou, & Zhao, 2006 ), genomic data analysis ( Yamanishi, Vert, 

Nakaya, & Kanehisa, 2003 ), image dehazing ( Wang, Xiao, & Wei, 

2015 ), closed-loop data identification ( Chou & Verhaegen, 2015 ) 

and machine learning ( Hardoon et al., 2004; Sun, Ji, & Ye, 2011 ). 

The above-mentioned work on feature extraction are all one- 

dimensional (1d) based methods, they must reshape image matri- 

ces into vectors, but such reshaping might break the spatial struc- 

ture of the images and increase the computational complexity. To 

solve these problems, some two-dimensional (2d) based methods 

have been proposed. Two-dimensional PCA (2DPCA) ( Yang, Zhang, 

Frangi, & Yang, 2004 ) was proposed by Yang et al. in 2004, in 

which an image covariance matrix is constructed directly using the 

original image matrices, and its eigenvectors are derived for image 

feature extraction. As opposed to CCA, two-dimensional canoni- 

cal correlation analysis (2D-CCA) ( Lee & Choi, 2007; Sun, Ji, Zou, 

& Zhao, 2010 ) is based on 2d image matrices rather than 1d vec- 

tors so the image matrix does not need to be transformed into a 

vector prior to feature extraction. Based on the manifold learning 

method, local 2D-CCA (L2DCCA) ( Wang, 2010 ) uses local informa- 

tion to identify nonlinear correlation between two sets of images. 

Probabilistic 2D-CCA (P2DCCA) ( Afrabandpey, Safayani, & Mirzaei, 

2014 ) is a probabilistic framework of 2D-CCA, which is robust to 

noise and is able to cope with the missing data problem. 2D-CCA 

based on pseudoinverse (2DCCAP) ( Wu, 2009 ) uses the pseudoin- 

verse technique to compute the singular matrix. We notice that 

2D-CCA, P2DCCA and 2DCCAP only extract two groups of feature, 

but they don’t fuse them. L2DCCA first combines 2d method with 

feature fusion strategy, and has achieved good results. In essence, 

2D-CCA is an unsupervised subspace learning method. From the 

viewpoint of classification, the supervised information of samples 

should be used. 

Motivated by above and the algorithm GCCA, a new method, 

called two-dimensional supervised canonical correlation analysis 

(2D-SCCA), is proposed to carry out the multiple feature extrac- 

tion for classification, in which the supervised information is 

added to the criterion function. Inspired by the method multiple 

rank multi-linear SVM (MRMLSVM) ( Hou, Nie, Zhang, Yi, & Wu, 

2014 ) and paper ( Gao, Fan, & Xu, 2016 ), by analyzing the rela- 

tionship between GCCA and 2D-SCCA, another feature extraction 

method called multiple-rank supervised canonical correlation anal- 

ysis (MSCCA) is also developed. Different from 2D-SCCA, in MSCCA 

k pairs left transforms and k pairs right transforms are sought to 

maximize the correlation. The detailed process of the algorithms 

we proposed is described as follows: we firstly extract two fea- 

ture matrices from the same patterns; then two groups of canoni- 

cal correlation features are extracted by using 2D-SCCA or MSCCA; 

finally, two feature fusion strategies are used to fuse the canonical 

correlation features. Besides, the convergence behavior and com- 

putational complexity of the algorithms are also analyzed. Plenty 

of experiments on different kinds of data sets are presented for il- 

lustration. 

The rest of this paper is organized as follows. In Section 2 , we 

will give overviews of CCA and 2D-CCA. Section 3 presents the 2D- 

SCCA method and its relevant theory and algorithm for classifica- 

tion. In Section 4 , we first analyze the relation between GCCA and 

2D-SCCA, then a new method MSCCA is proposed in details. Con- 

vergence analysis and computational complexity are carried out in 

Section 5 . Experiments and results analysis on various kinds of 

databases are performed in Section 6 . Finally, Section 7 provides 

the conclusion and future work. 

2. Background of related work 

This section includes brief reviews of CCA and 2D-CCA. 

2.1. CCA 

Given two sets of random vectors { x i ∈ R 

pq ×1 } N 
i =1 

and { y i ∈ 

R 

mn ×1 } N 
i =1 

. The goal of CCA is to find a pair of projection vectors 

w x and w y , such that the relation between w 

T 
x x and w 

T 
y y is maxi- 

mized. That is the following objective function is maximized 

ρ = 

cov (w 

T 
x x, w 

T 
y y ) √ 

v ar (w 

T 
x x ) v ar (w 

T 
y y ) 

. 

Assume { ̃ x i } N i =1 
and { ̃  y i } N i =1 

are centered data, denote C xy = 

1 
N 

∑ N 
i =1 ̃  x i ̃  y T 

i 
, C xx = 

1 
N 

∑ N 
i =1 ̃  x i ̃  x T 

i 
, C yy = 

1 
N 

∑ N 
i =1 ˜ y i ̃  y T 

i 
, then the objec- 

tive function can be simplified as 

max 
w 

T 
x C xy w y √ 

(w 

T 
x C xx w x )(w 

T 
y C yy w y ) 

. (1) 

Since the objective function of the optimization problem in (1) is 

invariant with respect to scaling of w x and w y , problem (1) can be 

reformulated as follows: 

arg max 
w x ,w y 

w 

T 
x C xy w y 

s.t. w 

T 
x C xx w x = 1 , 

w 

T 
y C yy w y = 1 . 

(2) 

Using the Lagrange multiplier method, we can get the following 

generalized eigenvalue equation [
0 C xy 

C yx 0 

][
w x 

w y 

]
= λ

[
C xx 0 

0 C yy 

][
w x 

w y 

]
. 

Via solving this problem, we can get the d largest eigenvalues of 

w x and w y . 

2.2. 2D-CCA 

Now we consider two sets of image data, { X t ∈ R 

p×q , t = 

1 , · · · , N } and { Y t ∈ R 

m ×n , t = 1 , · · · , N }, which are realizations of 

random variable matrices X and Y , respectively. The goal of 2D-CCA 

is to seek the left transform vectors l x , l y and the right transform 

vectors r x , r y to maximize the correlation between the projections 

l T x Xr x and l T y Y r y . In other words, the objective function to be maxi- 

mized is given as follows 

ρ = 

cov (l T x X r x , l 
T 
y Y r y ) √ 

v ar(l T x X r x ) 
√ 

v ar(l T y Y r y ) 
. (3) 

Using the same solving method with CCA, we can get the following 

two generalized eigenvalue problems, which are used to solve the 

transform vectors l x , l y and r x , r y , [
0 

∑ r 
xy ∑ r 

yx 0 

][
l x 
l y 

]
= λ

[∑ r 
xx 0 

0 

∑ r 
yy 

][
l x 
l y 

]
, (4) 

[
0 

∑ l 
xy ∑ l 

yx 0 

][
r x 
r y 

]
= λ

[∑ l 
xx 0 

0 

∑ l 
yy 

][
r x 
r y 

]
, (5) 

where the definitions of 
∑ r 

xy , 
∑ r 

yx , 
∑ r 

xx , 
∑ r 

yy , 
∑ l 

xy , 
∑ l 

yx , 
∑ l 

xx , 
∑ l 

yy 

are same as in ( Lee & Choi, 2007 ). 
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