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a b s t r a c t 

A mobile robot equipped with 2D or 3D range sensors can move without changing its range readings if 

the perceived environment is poor in features. This is an ambiguous situation because a single perception 

can be associated with several robot poses. In consequence, robot localization capability is reduced. The 

problem we address is the quantification of this perceptual ambiguity as a property inherent to the system 

composed of the sensor and the static environment. Perceptual ambiguity is different from uncertainty of 

robot localization, although it is a cause of it. We propose an ambiguity model independent of the robot 

navigation system. It includes a probabilistic model of the indistinguishability of range readings, a generic 

range sensor model that supports laser and sonar sensors, and a generic range scanner model that sup- 

ports any 2D or 3D range perception platform. Ambiguity is expressed in colour floor maps, which may 

be available before navigation starts, and where “bad localization” zones are easily detected. Experiments 

with virtual and real environments perceived from 2D laser and sonar scanners are presented, including 

the validation of the model with a real scans dataset. Results show how ambiguous zones are precisely 

determined, how to determine the optimum scanner orientation and aperture, and how to reduce the 

number of readings per scan for improving the robot’s computational load and navigation speed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Robot navigation in indoor environments is strongly based on 

exteroception ( Nehmzow, 2003; Thrun, Burgard, & Fox, 2005 ), typ- 

ically vision and range perception. Robot self-localization must al- 

low the estimation of robot position with enough precision to nav- 

igate and carry out assigned tasks. When using range perception 

there is an intrinsic source of degradation of this process: the en- 

vironment geometry. In areas of the environment with few per- 

ceivable features, it may occur that the robot moves, but readings 

of its range sensors do not change. An ambiguity situation arises 

because a single perception can be associated with several robot 

poses (positions and orientations). In ambiguous zones, robot lo- 

calization capability is reduced. Well-known examples are corri- 

dors in which large estimation error can be accumulated in walls 

direction. This ambiguity, that we name perceptual ambiguity , can 

be studied as a property intrinsic to the sensor-environment sys- 

tem. Perceptual ambiguity represents the potential localization dif- 
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ficulty or risk of robot loss, due to references poorness and limita- 

tions of the particular range sensor used. 

As related to the finite instrument resolution, perceptual ambi- 

guity is one of the sources of the measurement uncertainty ( Joint 

Committee for Guides in Metrology, 2008a, 2008b ), which is a 

component of the localization uncertainty. Therefore, perceptual 

ambiguity should imply localization uncertainty, but not necessar- 

ily the opposite. 

If this property is quantified then ambiguous zones of a given 

environment could be eventually represented as an ambiguity 

map. Perceptual ambiguity maps could identify areas with differ- 

ent degree of difficulty for robot localization. Fig. 1 shows an in- 

tuitively drawn ambiguity map of a large hall, where zones (blue, 

orange, red, and white) of different perceptual richness are iden- 

tified. The small green circle is the robot, and the dashed circum- 

ference around it represents its maximum capturable range. Blue 

means localizable positions, close to corners, doors, furniture, etc. 

Positions in red zones are highly ambiguous, too far from any ob- 

stacle. Orange positions are an intermediate case between blue and 

red, which perceive only one wall or two parallel walls that will 

produce the corridor effect. White positions indicate zones where 

the frontiers between colour zones should be but it is difficult to 
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Fig. 1. Intuitive map of perceptual ambiguity in a huge hall. Blue means potential 

localization, enough perceivable obstacles within the sensors scope. Orange means 

ambiguous perception, features poorness. Red means high ambiguity, no perceivable 

obstacles. White means difficult to predict. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

predict their location. The quantification of perceptual ambiguity 

could allow obtaining complete and exact (non-intuitive) ambigu- 

ity maps. 

Note that people or moving objects have not been mentioned. 

In this first work on perceptual ambiguity, we limit our study to 

the static part of the environment. 

The specific problem we focus on is how to formalize and quan- 

tify the perceptual ambiguity produced by the static environment 

to be perceived from a given range scanner device, in order to gen- 

erate ambiguity maps that can be effectively computed. 

The solution we propose is an ambiguity model based on the 

concept of indistinguishability of ranges, which is defined as the 

probability of being captured in the same discretized value. A 

generic scanner model is included, which can be applied to habit- 

ual laser and sonar devices, including 3D and heterogeneous per- 

ception platforms. This solution is a completely original contribu- 

tion in robot localizability estimation, not derived from any previ- 

ous work. 

The rest of the paper is organized as follows: Section 2 

presents previous work. Section 3 describes the contribution. 

Section 4 shows performed experiments and their results. Finally, 

our conclusions are stated in Section 5 . 

2. Related work 

In robot navigation literature, a pioneer work on the effects 

of environment richness on navigation is Roy, Burgard, Fox, and 

Thrun (1999) , where the coastal navigation technique was intro- 

duced. They modelled navigation uncertainty as the entropy of the 

probability distribution of the robot’s pose estimation during nav- 

igation. Several works used this technique, most of them in the 

motion planning area ( Feder, Leonard, & Smith, 1999; González & 

Stentz, 2007; Makarenko, Williams, Bourgault, & Durrant-Whyte, 

2002; Prentice & Roy, 2007; Stachniss, 2006 ). Some applications 

of this technique can be found in the context of wireless sen- 

sor network localization ( Schaffert, 2006 ), and vision with artifi- 

cial landmarks ( Wen, Yuan, Zou, Chai, & Zheng, 2009 ). This nav- 

igation uncertainty includes the effects from the particular local- 

ization algorithm and from other navigation subsystems, such as 

the motion model. The main difference between works that fol- 

low coastal navigation technique and our approach consist in that 

coastal navigation models navigation uncertainty and therefore is 

dependent of the localization algorithm. Our approach, by con- 

trast, does not model navigation uncertainty. It exclusively models 

a source of localization difficulty due to the sensor-environment 

interaction, which is independent of the localization algorithm. 

In Kollar and Roy (2008) , a trajectory optimization for mapping 

is presented. They use a reward function to select the trajectories, 

which minimizes the estimated map error. Their function, although 

independent of the localization algorithm, depends on the map- 

ping algorithm. The main difference of our approach is that we 

measure the intrinsic ambiguity, instead of the mapping error. 

The idea of studying navigation limits was approached in Censi 

(2007) , which presented a theoretical limit to the precision of lo- 

calization methods employing laser range-finder data. His model is 

based on Cramér–Rao Bound, based on the inverse of the Fisher 

information, which requires the analytic function of the environ- 

ment’s walls to be differentiable. This condition is not met in the 

borders of obstacles (e.g. corners), but laser range-finders have lin- 

ear perception cone, perceiving these borders from positions of the 

environment whose total area is zero. Sonar sensors have a consid- 

erable perception cone (25 ° to 30 °), therefore the non-computable 

area is significant and resulting localizability maps are not use- 

ful. Consequently, a main difference with respect our model, not 

based on Cramér–Rao Bound, is that this work cannot be applied 

to sonar, while our model includes both sensor types. Some works 

base their models on the Cramér–Rao Bound presented in Censi 

(2007) . They are presented as follows. 

In Liu, Chen, Wang, and Wang (2014) , the objective is to de- 

velop a time-efficient method that enables mobile robots to ac- 

tively and cooperatively localize themselves in a large environ- 

ment with uncertain information. Their approach is to estimate 

the localizability for mobile robots previously to an action selec- 

tion mechanism which encourages mobile robots to select comple- 

mentary actions. Liu, Chen, and Wang (2015) propose a multilayer 

matching based incremental mapping algorithm designed to keep 

map accuracy and consistency in large scale and spacious environ- 

ments. In this algorithm, the data association is built by the multi- 

layer matching method, and the uncertainty is described with the 

Fisher information matrix. In addition, a localizability-based par- 

ticle filter localization algorithm is utilized to maintain localiza- 

tion accuracy in dynamic environments. Wang, Chen, and Wang 

(2014) present a localizability-based particle filtering localization 

algorithm in high-occluded and dynamic environments. In Wang, 

Yang, and Chen (2015) , an application of localizability estimation 

is presented. They address a localization and alignment method, 

to accurately control the navigation and localization of a transfer 

cask, a huge (80ton) transportation container carried by a hover- 

craft equipped with a laser range-finder. In Wang, Chen, Wang, and 

Wang (2015) , a localizability-based action selection mechanism for 

mobile robots is proposed to accelerate the convergence of global 

localization, taking the uncertainty of a prior-map into account. Hu, 

Chen, Wang, and Wang (2016) present a path planning method for 

a mobile manipulator based on localizability. They use the infor- 

mation matrix of Censi (2007) to indicate the uncertainty of the lo- 

calization, and cubic Bezier spline to represent the path. Qian, Ma, 

Fang, Dai, and Zhou (2016) propose a real-time observation local- 

izability estimation method for robot localization in unstructured 

environments with low-cost sensors. They estimate the robot lo- 

calizability by means of a dynamic localizability matrix computed 

online by combining a factor of influence of dynamic obstacles de- 

tected from actual robot’s perception, with a static localizability 

matrix obtained from a priori environment’s map. These localiz- 

ability matrices, derived from the work of Y. Wang et al. (2015) , 

are discrete models of the Fisher information matrix. 

As mentioned above, previous works are grounded on the sem- 

inal work of Censi (2007) . In general, they estimate the localizabil- 

ity as the determinant of the inverse covariance matrix for local- 

ization. A difference respect to our work is that their models, as 

based on the Cramér–Rao Bound, by the same reason explained for 

Censi (2007) , cannot be applied to sonar. Other aspects that differ- 

enciate from our work are the following. Their model is limited 

to laser range-finders. Their sensor model includes gaussian noise, 

but this noise is not procedent from the sensor calibration, as our 

model includes. It comes from the uncertainty of the probatilistic 

grid map used for represent the environment. Their sensor model 

does not represent the discretization of the instrument. Our model 

represents this discretization with a probabilistic approach that 
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