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a b s t r a c t 

Resource sharing is an inherent characteristic of cloud data centers. Virtual Machines (VMs) and/or Con- 

tainers that are co-located in the same physical server often compete for resources leading to interfer- 

ence. The noisy neighbor’s effect refers to an anomaly caused by a VM/container limiting resources ac- 

cessed by another one. Our main contribution is an online, lightweight and application-agnostic solution 

for anomaly detection, that follows an unsupervised approach. It is based on comparing models for dif- 

ferent lags: Dirichlet Process Gaussian Mixture Models to characterize the resource usage profile of the 

application, and distance measures to score the similarity among models. An alarm is raised when there 

is an abrupt change in short-term lag (i.e. high distance score for short-term models), while the long-term 

state remains constant. We test the algorithm for different cloud workloads: websites, periodic batch ap- 

plications, Spark-based applications, and Memcached server. We are able to detect anomalies in the CPU 

and memory resource usage with up to 82–96% accuracy (recall) depending on the scenario. Compared to 

other baseline methods, our approach is able to detect anomalies successfully, while raising low number 

of false positives, even in the case of applications with unusual normal behavior (e.g. periodic). Experi- 

ments show that our proposed algorithm is a lightweight and effective solution to detect noisy neighbor 

effect without any historical info about the application, that could also be potentially applied to other 

kind of anomalies. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

1.1. Motivation 

Cloud data centers are able to run millions of applications 

( Foster, Zhao, Raicu, & Lu, 2008 ). Each application service or task 

is typically encapsulated in a Virtual Machine (VM) or container. 

VMs or containers with different resource usage needs may be co- 

located in the same physical machine. Resource sharing (including 

CPU, memory or cache) may cause resource contention bottleneck, 

i.e., two VMs (or group of containers) compete for the same re- 

sources, but the resource capacity is not enough for both of them. 

This leads to anomalies in the resource usage of the application 

that may penalize application performance. 
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Resource management in virtualized environments typically 

makes use of consolidation or overbooking techniques, which just 

increments the risk of VM interference. Application malfunction- 

ing translates directly into financial penalties: end-users will be 

discouraged from using the application, or cloud providers must 

compensate the client for SLA (Service Level Agreement) violations. 

These are some real numbers from large corporations ( Huang, 

Maltz, Li, & Greenberg, 2011 ): Amazon suffers from 1% decrease 

in sales for additional 100 ms delay in response time, while Google 

reports a 20% drop in traffic due to 500 ms delay in response time. 

Thus, detecting performance issues is mandatory from the cloud 

provider’s perspective, in order to avoid performance degradation 

that might cause significant economical losses. 

1.2. Problem statement and goal 

VMs/containers in the same physical server share some re- 

sources, such as CPU, memory, or cache hierarchies. Resource shar- 

ing may lead to VMs/containers affecting or being affected by other 

co-located VMs/containers. The noisy neighbors effect is an analogy 

for this interference ( Pu et al., 2010 ). It is reflected as anomalous 
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Fig. 1. Sample noisy neighbor effect on CPU load. Anomalies are shaded areas (in 

red color). Data has been collected from a benchmark application (a static web- 

site) running on a Docker container. Anomalies represents interference caused by 

another process or container; the benchmark application cannot access to the CPU 

share that was initially allocated to it. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

resource usage from the service running inside the VM or con- 

tainer (see Fig. 1 ). Its detection imposes several challenges: (1) 

the normal resource usage pattern is application-specific, with un- 

known distribution, and (2) prone to change due to workload vari- 

ations; and (3) even the anomaly definition is application-specific 

and it might appear under different forms. 

The goal of this paper is to propose an online, lightweight and 

application-agnostic solution to detect anomalies caused by the 

noisy neighbor problem. 

1.3. Existing solutions 

There are different alternatives to address the noisy neighbor 

problem. Some lie under the mitigation or avoidance approaches 

( Beloglazov & Buyya, 2013; Bobroff, Kochut, & Beaty, 2007; Wood, 

Shenoy, Venkataramani, & Yousif, 2009 ), others in the detection 

side ( Bodik, Goldszmidt, Fox, Woodard, & Andersen, 2010; Silvestre, 

Sauvanaud, Kaâniche, & Kanoun, 2015; Wang, Talwar, Schwan, & 

Ranganathan, 2010 ). 

The first obvious technique is to try avoiding the problem. Sev- 

eral solutions have been proposed to deal with performance issues 

coming caused by resource interference. There exist techniques 

to provide particular resource isolation (mitigation), i.e. CPU pin- 

ning ( IBM, 2012 ). Schedulers might try to select applications with 

compatible profiles: e.g. CPU-intensive with memory-intensive one. 

Still, cloud data centers are highly dynamic due to different fac- 

tors e.g. rapid elasticity ( Jula, Sundararajan, & Othman, 2014 ), VM 

migrations, varying incoming workloads. Thus, anomalies in per- 

formance will happen, and detection algorithms are a real need in 

data centers. 

There are two main strategies in any detection problem, su- 

pervised and unsupervised approaches. Supervised learning algo- 

rithms are suited for recognizing well-known anomalies, but they 

require labeled datasets. It is difficult, if not totally impossible, to 

obtain labeled training data (i.e., measurement samples associated 

with normal or abnormal labels) from production cloud systems 

( Dean, Nguyen, & Gu, 2012 ). The need for well-labeled training 

data greatly limits the scope of their application for real-time use 

Ibidunmoye, Hernández-Rodriguez, and Elmroth (2015) . In contrast, 

unsupervised learning algorithms require no labeled data. In addi- 

Fig. 2. Histogram of CPU load for different applications. 

tion to this, such algorithms are particularly suitable for detecting 

unknown anomalies in cloud data centers where precise definition 

of anomaly characteristics may not always exist ( Ibidunmoye et al., 

2015 ). 

Anomaly detection methods can be classified into two subcat- 

egories, which are threshold-based and statistical methods ( Wang 

et al., 2010 ). Threshold-based approaches are too simple and usu- 

ally ineffective when anomaly properties vary over time. In con- 

trast, statistical methods are often used for anomaly detection in 

the cloud ( Dean et al., 2012; Sauvanaud, Silvestre, Kaâniche, & Ka- 

noun, 2015; Wang et al., 2010 ), but they usually suffer from high 

computing overheads and often require prior knowledge about ap- 

plication ( Wang et al., 2010 ). 

CPI2 ( Zhang et al., 2013 ) approach falls under this category of 

statistical detection methods. Authors propose adjusting a distri- 

bution probability to the CPI metric (generalized extreme vale in 

their case), and take values that exceed 2 σ (or 3 σ ) from the mean 

as outliers. However, we can easily see in Fig. 2 that resource us- 

age (CPU in this case) of different applications may show differ- 

ent probability distributions. Therefore, an anomaly detection al- 

gorithm cannot just assume a concrete probability distribution. 

In conclusion, both avoidance and detection techniques may 

(and should) be used together. The current manuscript focuses on 

solutions for anomaly detection, more specifically, for the noisy 

neighbor’s effect. From the literature ( Ibidunmoye et al., 2015 ), we 

can conclude that an unsupervised approach would be suitable in 

an environment where there is no a-priori knowledge, and also 

that an statistical approach would be effective, provided that we 

find a way to model any resource usage pattern (probability distri- 

bution) while keeping its computational cost low. 

1.4. Our approach 

Given the literature, we have come up with the following re- 

quirements for our algorithm: 

• Application-agnostic: That is, the algorithm should not require 

any a-priori knowledge of the application. We have seen that 

each application has different resource usage patterns (check 

Fig. 2 ). 
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