
Expert Systems With Applications 89 (2017) 188–204

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

An unsupervised approach to online noisy-neighbor detection in cloud

data centers

Tania Lorido-Botran

a , ∗, Sergio Huerta

a , Luis Tomás b , 1 , Johan Tordsson

b , Borja Sanz

a

a DeustoTech – Computing, University of Deusto, Avenida de las Universidades 24, Bilbao 48007, Spain
b Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden

a r t i c l e i n f o

Article history:

Received 31 January 2017

Revised 22 July 2017

Accepted 24 July 2017

Available online 25 July 2017

Keywords:

Anomaly detection

Virtual machine

Cloud computing

DPGMM

Noisy-neighbor effect

Similarity distances

a b s t r a c t

Resource sharing is an inherent characteristic of cloud data centers. Virtual Machines (VMs) and/or Con-

tainers that are co-located in the same physical server often compete for resources leading to interfer-

ence. The noisy neighbor’s effect refers to an anomaly caused by a VM/container limiting resources ac-

cessed by another one. Our main contribution is an online, lightweight and application-agnostic solution

for anomaly detection, that follows an unsupervised approach. It is based on comparing models for dif-

ferent lags: Dirichlet Process Gaussian Mixture Models to characterize the resource usage profile of the

application, and distance measures to score the similarity among models. An alarm is raised when there

is an abrupt change in short-term lag (i.e. high distance score for short-term models), while the long-term

state remains constant. We test the algorithm for different cloud workloads: websites, periodic batch ap-

plications, Spark-based applications, and Memcached server. We are able to detect anomalies in the CPU

and memory resource usage with up to 82–96% accuracy (recall) depending on the scenario. Compared to

other baseline methods, our approach is able to detect anomalies successfully, while raising low number

of false positives, even in the case of applications with unusual normal behavior (e.g. periodic). Experi-

ments show that our proposed algorithm is a lightweight and effective solution to detect noisy neighbor

effect without any historical info about the application, that could also be potentially applied to other

kind of anomalies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Cloud data centers are able to run millions of applications

(Foster, Zhao, Raicu, & Lu, 2008). Each application service or task

is typically encapsulated in a Virtual Machine (VM) or container.

VMs or containers with different resource usage needs may be co-

located in the same physical machine. Resource sharing (including

CPU, memory or cache) may cause resource contention bottleneck,

i.e., two VMs (or group of containers) compete for the same re-

sources, but the resource capacity is not enough for both of them.

This leads to anomalies in the resource usage of the application

that may penalize application performance.

∗ Corresponding author.

E-mail addresses: tania.lorido@deusto.es (T. Lorido-Botran), shuerta@deusto.es

(S. Huerta), luis@cs.umu.se (L. Tomás), tordsson@cs.umu.se (J. Tordsson),

borja.sanz@deusto.es (B. Sanz).
1 Current ly at Red Hat, Spain.

Resource management in virtualized environments typically

makes use of consolidation or overbooking techniques, which just

increments the risk of VM interference. Application malfunction-

ing translates directly into financial penalties: end-users will be

discouraged from using the application, or cloud providers must

compensate the client for SLA (Service Level Agreement) violations.

These are some real numbers from large corporations (Huang,

Maltz, Li, & Greenberg, 2011): Amazon suffers from 1% decrease

in sales for additional 100 ms delay in response time, while Google

reports a 20% drop in traffic due to 500 ms delay in response time.

Thus, detecting performance issues is mandatory from the cloud

provider’s perspective, in order to avoid performance degradation

that might cause significant economical losses.

1.2. Problem statement and goal

VMs/containers in the same physical server share some re-

sources, such as CPU, memory, or cache hierarchies. Resource shar-

ing may lead to VMs/containers affecting or being affected by other

co-located VMs/containers. The noisy neighbors effect is an analogy

for this interference (Pu et al., 2010). It is reflected as anomalous

http://dx.doi.org/10.1016/j.eswa.2017.07.038

0957-4174/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2017.07.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.07.038&domain=pdf
mailto:tania.lorido@deusto.es
mailto:shuerta@deusto.es
mailto:luis@cs.umu.se
mailto:tordsson@cs.umu.se
mailto:borja.sanz@deusto.es
http://dx.doi.org/10.1016/j.eswa.2017.07.038

T. Lorido-Botran et al. / Expert Systems With Applications 89 (2017) 188–204 189

Fig. 1. Sample noisy neighbor effect on CPU load. Anomalies are shaded areas (in

red color). Data has been collected from a benchmark application (a static web-

site) running on a Docker container. Anomalies represents interference caused by

another process or container; the benchmark application cannot access to the CPU

share that was initially allocated to it. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

resource usage from the service running inside the VM or con-

tainer (see Fig. 1). Its detection imposes several challenges: (1)

the normal resource usage pattern is application-specific, with un-

known distribution, and (2) prone to change due to workload vari-

ations; and (3) even the anomaly definition is application-specific

and it might appear under different forms.

The goal of this paper is to propose an online, lightweight and

application-agnostic solution to detect anomalies caused by the

noisy neighbor problem.

1.3. Existing solutions

There are different alternatives to address the noisy neighbor

problem. Some lie under the mitigation or avoidance approaches

(Beloglazov & Buyya, 2013; Bobroff, Kochut, & Beaty, 2007; Wood,

Shenoy, Venkataramani, & Yousif, 2009), others in the detection

side (Bodik, Goldszmidt, Fox, Woodard, & Andersen, 2010; Silvestre,

Sauvanaud, Kaâniche, & Kanoun, 2015; Wang, Talwar, Schwan, &

Ranganathan, 2010).

The first obvious technique is to try avoiding the problem. Sev-

eral solutions have been proposed to deal with performance issues

coming caused by resource interference. There exist techniques

to provide particular resource isolation (mitigation), i.e. CPU pin-

ning (IBM, 2012). Schedulers might try to select applications with

compatible profiles: e.g. CPU-intensive with memory-intensive one.

Still, cloud data centers are highly dynamic due to different fac-

tors e.g. rapid elasticity (Jula, Sundararajan, & Othman, 2014), VM

migrations, varying incoming workloads. Thus, anomalies in per-

formance will happen, and detection algorithms are a real need in

data centers.

There are two main strategies in any detection problem, su-

pervised and unsupervised approaches. Supervised learning algo-

rithms are suited for recognizing well-known anomalies, but they

require labeled datasets. It is difficult, if not totally impossible, to

obtain labeled training data (i.e., measurement samples associated

with normal or abnormal labels) from production cloud systems

(Dean, Nguyen, & Gu, 2012). The need for well-labeled training

data greatly limits the scope of their application for real-time use

Ibidunmoye, Hernández-Rodriguez, and Elmroth (2015) . In contrast,

unsupervised learning algorithms require no labeled data. In addi-

Fig. 2. Histogram of CPU load for different applications.

tion to this, such algorithms are particularly suitable for detecting

unknown anomalies in cloud data centers where precise definition

of anomaly characteristics may not always exist (Ibidunmoye et al.,

2015).

Anomaly detection methods can be classified into two subcat-

egories, which are threshold-based and statistical methods (Wang

et al., 2010). Threshold-based approaches are too simple and usu-

ally ineffective when anomaly properties vary over time. In con-

trast, statistical methods are often used for anomaly detection in

the cloud (Dean et al., 2012; Sauvanaud, Silvestre, Kaâniche, & Ka-

noun, 2015; Wang et al., 2010), but they usually suffer from high

computing overheads and often require prior knowledge about ap-

plication (Wang et al., 2010).

CPI2 (Zhang et al., 2013) approach falls under this category of

statistical detection methods. Authors propose adjusting a distri-

bution probability to the CPI metric (generalized extreme vale in

their case), and take values that exceed 2 σ (or 3 σ) from the mean

as outliers. However, we can easily see in Fig. 2 that resource us-

age (CPU in this case) of different applications may show differ-

ent probability distributions. Therefore, an anomaly detection al-

gorithm cannot just assume a concrete probability distribution.

In conclusion, both avoidance and detection techniques may

(and should) be used together. The current manuscript focuses on

solutions for anomaly detection, more specifically, for the noisy

neighbor’s effect. From the literature (Ibidunmoye et al., 2015), we

can conclude that an unsupervised approach would be suitable in

an environment where there is no a-priori knowledge, and also

that an statistical approach would be effective, provided that we

find a way to model any resource usage pattern (probability distri-

bution) while keeping its computational cost low.

1.4. Our approach

Given the literature, we have come up with the following re-

quirements for our algorithm:

• Application-agnostic: That is, the algorithm should not require

any a-priori knowledge of the application. We have seen that

each application has different resource usage patterns (check

Fig. 2).

Download English Version:

https://daneshyari.com/en/article/4943216

Download Persian Version:

https://daneshyari.com/article/4943216

Daneshyari.com

https://daneshyari.com/en/article/4943216
https://daneshyari.com/article/4943216
https://daneshyari.com

