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a b s t r a c t 

Classifiers deployed in the real world operate in a dynamic environment, where the data distribution 

can change over time. These changes, referred to as concept drift, can cause the predictive performance 

of the classifier to drop over time, thereby making it obsolete. To be of any real use, these classifiers 

need to detect drifts and be able to adapt to them, over time. Detecting drifts has traditionally been ap- 

proached as a supervised task, with labeled data constantly being used for validating the learned model. 

Although effective in detecting drifts, these techniques are impractical, as labeling is a difficult, costly and 

time consuming activity. On the other hand, unsupervised change detection techniques are unreliable, as 

they produce a large number of false alarms. The inefficacy of the unsupervised techniques stems from 

the exclusion of the characteristics of the learned classifier, from the detection process. In this paper, 

we propose the Margin Density Drift Detection (MD3) algorithm, which tracks the number of samples 

in the uncertainty region of a classifier, as a metric to detect drift. The MD3 algorithm is a distribution 

independent, application independent, model independent, unsupervised and incremental algorithm for 

reliably detecting drifts from data streams. Experimental evaluation on 6 drift induced datasets and 4 

additional datasets from the cybersecurity domain demonstrates that the MD3 approach can reliably de- 

tect drifts, with significantly fewer false alarms compared to unsupervised feature based drift detectors. 

At the same time, it produces performance comparable to that of a fully labeled drift detector. The re- 

duced false alarms enables the signaling of drifts only when they are most likely to affect classification 

performance. As such, the MD3 approach leads to a detection scheme which is credible, label efficient 

and general in its applicability. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Machine Learning has ushered in an era of data deluge, with 

the increasing scale and reach of modern day web applications 

( Wu, Zhu, Wu, & Ding, 2014 ). Classification has been adopted as 

a popular technique for providing data-driven prediction/detection 

capabilities, at the core of several otherwise complicated or in- 

tractable tasks. The ability to generalize and extrapolate from data 

has made its usage attractive as a general approach to data driven 

problem solving. However, the generalization ability of classifiers 

relies on an important assumption of Stationarity - which states 

that the training and the test data should be Identically and In- 

dependently Distributed (IID), derived from the same distribution 

( Zliobaite, 2010 ). This assumption is often violated in the real 

world, where dynamic changes occur constantly. These changes in 
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the data distribution, called Concept Drift, can cause the predictive 

performance of the classifiers to degrade over time. To ensure that 

classifiers operating in such dynamic environments are useful and 

not obsolete, an adaptive machine learning strategy is warranted, 

which can detect changes in data and then update the models as 

new data becomes available. 

While several adaptive techniques have been proposed in lit- 

erature ( Baena-Garcıa et al., 2006; Bifet & Gavalda, 2007; Gama, 

Medas, Castillo, & Rodrigues, 2004; Goncalves, de Carvalho San- 

tos, Barros, & Vieira, 2014 ), they rely on the unhindered and un- 

bounded supply of human expertise, in the form of labeled data, 

to detect and adapt to drifting data. In a streaming environment, 

where data flows in constantly, such constant human interven- 

tion is impractical, as labeling is time consuming, expensive and in 

some cases, not a possibility at all ( Krempl et al., 2014; Lughofer, 

Weigl, Heidl, Eitzinger, & Radauer, 2016 ). To highlight the problem 

of label dependence, consider the task of detecting hate speech 

from live tweets ( Burnap & Williams, 2016 ), using a classifica- 

tion system facing the twitter stream (estimated at 500M daily 
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Fig. 1. Drift as a function of the learned classifier model. 

tweets 1 ). If 0.5% of the tweets are requested to be labeled, using 

crowd sourcing websites such as Amazon’s Mechanical Turk, 2 this 

would imply a daily expenditure of $50K (each worker paid $1 for 

50 tweets), and a continuous availability of 350 crowd sourced 

workers (assuming each can label 10 tweets per minute, and work 

for 12 h/day), every single day, for this particular task alone. The 

scale and velocity of modern day data applications makes such 

dependence on labeled data a practical and economic limitation. 

Streaming data applications need to be able to operate and detect 

drifts from unlabeled, or atmost sparsely labeled data, to be of any 

real use. 

Although the use of labeled data for retraining and updating 

models is largely unavoidable, its use for the purpose of drift 

detection is superfluous. The need for constant validation of the 

learned model leads to wasted labels, which are discarded when 

the model is found to be stable ( Sethi & Kantardzic, 2015 ). This 

has motivated the development of unlabeled drift detection tech- 

niques ( da Costa, Rios, & de Mello, 2016; Ditzler & Polikar, 2011 ), 

which monitor changes to the feature distribution, as an early indi- 

cator of drift. However, existing methods using unlabeled data are 

essentially change detection techniques that detect any change to 

the data distribution, irrespective of its effects on the classification 

process ( da Costa et al., 2016; Ditzler & Polikar, 2011; Kuncheva 

& Faithfull, 2014; Lee & Magoules, 2012; Qahtan, Alharbi, Wang, 

& Zhang, 2015 ). For the task of classification, change is relevant 

only when it causes model performance to degrade. This relevance 

is a function of the learned model, as illustrated in Fig. 1 , where 

the same data shift resulted in diametrically opposite results. In 

Fig. 1 a), the model performance is unaffected, while in b), there 

is a complete failure in the prediction capabilities of C2. The dif- 

ference lies in the classier models C1 and C2, which are a re- 

sult of learning on different views of the same data. The exist- 

ing unlabeled techniques fail to make this distinction between the 

two cases, as they totally exclude the classifier from the detection 

process and make decisions solely on the distribution characteris- 

tics of the unlabeled data. This results in increased sensitivity to 

change and a large number of generated false alarms. False alarms 

in drift detection makes the algorithm overly paranoid and leads 

to wasted labeling effort, which is spent to verify relevance of the 

change. 

From a probabilistic perspective, concept drift can be seen as a 

change in the joint probability distribution of the data samples X 

and their corresponding class labels Y , as per Eq. (1) ( Gao, Fan, & 

Han, 2007 ). Unlabeled change detection techniques track changes 

to P ( X ), while the labeled drift detection approaches directly track 

P ( Y | X ). In this paper, an unlabeled drift detection methodology is 

1 http://www.internetlivestats.com/twitter-statistics (2016). 
2 www.mturk.com. 

proposed, which can vicariously track changes to P ( Y | X ), without 

needing explicit labeled samples. Changes are tracked based on 

the distribution of sample relative to the learned classifier’s bound- 

ary, to make it robust towards irrelevant changes in distribution of 

data. 

P (X, Y ) = P (Y | X ) .P (X ) (1) 

The Margin Density Drift Detection (MD3) methodology, pro- 

posed in this paper, monitors the number of samples in a clas- 

sifier’s region of uncertainty (its margin), to detect drifts. Ro- 

bust classifiers, such as Support Vector Machines (SVM) ( Chang & 

Lin, 2011 ) or a feature bagged ensemble ( Bryll, Gutierrez-Osuna, & 

Quek, 2003 ), after training, have regions of uncertainty called mar- 

gins as depicted in Fig. 2 . These regions are a result of the clas- 

sifier’s attempt to generalize over unseen data and they represent 

the model’s best guess over that data space. A large margin width 

with a low density (given by number of samples) , is at the core of 

any optimization based classification process (such as SVM). While, 

explicit information about class distribution is learned in the train- 

ing of a classifier, an additional auxiliary information also learned 

and often overlooked is the margin characteristics, such as the ex- 

pected margin density. This information is representative of the 

data state and any change in it could indicate Non-Stationarity. 

Margin is crucial to the generalization process and any changes to 

the margin density is worthy of further verification. Since the mar- 

gin density can be computed from unlabeled data only, it could be 

used as a substitute to explicit labeled drift detection techniques, 

for monitoring changes in P ( Y | X ). In case of classifiers without ex- 

plicit notions of margins, the generalization regions (Blindspots) 

are still prevalent, allowing the application of the margin den- 

sity technique to a wide variety of algorithms, under an ensem- 

ble framework ( Sethi, Kantardzic, & Arabmakki, 2016a ). With this 

motivation, the MD3 methodology is proposed as a application in- 

dependent, classifier independent, unlabeled and incremental ap- 

proach to reliably signal concept drift from streaming data. 

While false alarms in change detection are a hassle, due to the 

increased labeling expenditure and the need for frequent verifi- 

cation, this behavior is especially undesirable in cybersecurity ap- 

plications because- (a) Frequent false alarms annoys experts, who 

provide model verification, causing the detection process to lose 

credibility, (b) An overly reactive system can be used by an adver- 

sary to manipulate learning, or to cause it to spend an excessive 

amount of money on labeling ( Barreno, Nelson, Joseph, & Tygar, 

2010 ) and (c) Increased labeling due to false alarms are expen- 

sive (even using crowd-sourcing websites at large scale, every day 

is expensive) and they cause delay in the detection of attacks. As 

such, we will evaluate the MD3 approach as a domain indepen- 

dent methodology first and then also evaluate its applicability as a 

reliable drift detection approach in adversarial streaming domains. 
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