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a b s t r a c t 

In this paper, a feedback neural network model is proposed to compute the solution of the mathematical 

programs with equilibrium constraints (MPEC). The MPEC problem is altered into an identical one-level 

non-smooth optimization problem, then a sequential dynamic scheme that progressively approximates 

the non-smooth problem is presented. Besides asymptotic stability, it is proven that the limit equilibrium 

point of the suggested dynamic model is a solution for the original MPEC problem. Numerical simulation 

of various types of MPEC problems shows the significance of the results. Moreover, the scheme is applied 

to compute the Stackelberg–Cournot–Nash equilibria. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Mathematical programming with equilibrium constraints 

(MPEC) is an optimization problem in which the constraints, 

contain variational inequalities (VI) or complementarities. This 

problem emerges in numerous applications such as transportation 

networks, multilevel games, economic equilibrium and shape 

optimization ( Luo, Pang, & Ralph, 1996; Marcotte, 1986; Outrata, 

Kocvara, & Zowe, 1998 ). It is well known that MPECs are very 

difficult problems. They are non-smooth and non-convex, even 

under desirable assumptions ( Facchinei, Jiang, & Qi, 1999; Luo 

et al., 1996 ). Hence, standard algorithms may not be efficient for 

MPECs. Actually, a few numbers of numerical algorithms can solve 

such problems successfully ( Andreani, 2001 ). Penalty approach, 

implicit programming approach and piecewise programming ap- 

proach are the main methods that have been used to solve this 

problem ( Kocvara & Outrata, 2004 ). However, in many engineering 

and scientific applications, real-time solutions are often desired, 

see He, Li, Huangb, and Li (2014) . These problems may have 

high dimensions and dense structure ( Ferris, 2002 ). Therefore, 

usual numerical algorithms may fail in such situations. Specially, 

they are not efficient in solving large-scale problems. One of 

the most interesting and simplest methods for solving real-time 

optimization is to apply neural networks. 
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Artificial Neural Network (ANN) is an instrument for trans- 

ferring the optimization problems in a particular first order dy- 

namic system ( Malek, Hosseinipour-Mahani, & Ezazipour, 2010; 

Pyne, 1956 ). Firstly, Hopfield and Tank (1985, 1986) suggested a 

recurrent neural system to solve Linear programming problems. 

Thereafter, different models of ANNs have been utilized in deal- 

ing with various sorts of optimization problems such as convex 

( Malek, Ezazipour, & Hosseinipour-Mahani, 2011b; Malek et al., 

2010 ), non-convex ( Hosseinipour-Mahani & Malek, 2015; 2016; 

Sun & Feng, 2005 ), non-smooth ( Hosseini & Hosseini, 2013; 

Liu & Wang, 2013 ), variational inequalities ( Malek, Ezazipour, & 

Hosseinipour-Mahani, 2011a ) and so on. The main advantage of 

neural computing is that these models may be implemented by a 

circuit easily. Furthermore, they converge to the optimal solution 

very quickly ( Hopfield & Tank, 1985 ). Application of Artificial Neu- 

ral networks in solving MPECs is entirely a new tackle. Recently, 

Sheng, Lv, and Xu (1996) considered a special class of MPEC prob- 

lems, i.e., bi-level programming problem(BLP) and by using Frank- 

Wolfe method, they suggested an ANN model to solve this prob- 

lem. A hybrid ANN for BLPs is introduced by Lana, Wena, Shihb, 

and Leec (2007) . Based on the Morrison method Li, Li, Wu, and 

Huang (2014) ; Morrison (1968) and He et al. (2014) proposed two 

different models to solve convex quadratic BLP problems. Lv, Chen, 

and Wan (2011) have used Lagrange function to design a neural 

network model to solve MPEC. 

The motivation behind this investigation is building up a novel 

ANN model with a simple structure to solve MPEC problems 

with general nonlinear constraints. Using KKT optimality condi- 

tions for the inner variational inequalities, MPEC problem is trans- 

formed into an identical non-smooth optimization problem. The 
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non-smooth constraints have been smoothed, utilizing the smooth- 

ing technique in Facchinei et al. (1999) . Then, a sequential dynamic 

scheme which progressively approximates the non-smooth prob- 

lem, is presented. The use of Lagrange multipliers in Lagrange ANN 

model in Lv et al. (2011) , increase the number of state variables 

dramatically, which enlarge the scale of ANN model. Thus, reducing 

the scale of neural network for solving MPECs, is very necessary. 

The outstanding feature of the proposed model is not included La- 

grange multipliers and hence have a simpler framework for imple- 

menting. Moreover, it is more suitable for large-scale problems. 

This research paper is structured as follows. In the next section, 

The problem formulation and smoothing method are explained. 

In Section 3 , first, the energy function and the corresponding 

gradient-based subnetwork is constructed . Next, the theoretical 

aspects of suggested model are discussed. A feedback ANN model 

for solving MPEC problems is presented in Section 4 . Section 5 , 

is allocated to computational experiences on several academic ex- 

amples and a Stackelberg–Cournot–Nash problem. Section 6 , con- 

cludes this paper. 

2. Problem statement and smoothing technique 

Let x ∈ R 

n , y ∈ R 

m , f : R 

n + m → R , g : R 

n → R 

p are contin- 

uously differentiable functions. Also, for each x ∈ Z = { x ∈ R 

n : 

g(x ) ≤ 0 } S ( x ) denotes the solutions of variational inequality prob- 

lems defined by a continuously differentiable function F ( x, y ) over 

the set �( x ) represented by 

(u − y ) T F (x, y ) ≥ 0 , ∀ u ∈ �(x ) , 

where �( x ) is defined by �(x ) = { y ∈ R 

m : h j (x, y ) ≥ 0 , j = 1 , . . . , l} , 
with h : R 

n + m → R 

l twice continuously differentiable and concave 

over y . The general formulation of the mathematical program with 

equilibrium constraints (MPEC) can be written as: 

min f (x, y ) 
s . t . g(x ) ≤ 0 , 

y ∈ S(x ) . 
(1) 

Let J(x, y ) = { j : h j (x, y ) = 0 } be the set of active constraints and 

make the following assumptions (see also Facchinei et al., 1999 ): 

A1. Z ⊆ R 

n is nonempty and compact. �( x ) 	 = ∅ ∀ x ∈ A , where A is 

an open set containing Z . 

A2. �( x ) is uniformly compact on A , i.e., there exist an open 

bounded set B ⊆ R 

m such that �( x ) ⊆B ∀ x ∈ A . 

A3. F is uniformly strongly monotone over the second variable on A 

× B , i.e., there exist a constant α ≥ 0 such that 

d T ∇ y F (x, y ) d ≥ α‖ d‖ 

2 , ∀ (x, y ) ∈ A × B and d ∈ R 

m . 

A4. At each x ∈ Z and y ∈ S ( x ), the partial gradients ∇ y h j (x, y ) , j ∈ 

J(x, y ) are linearly independent. 

The prominent consequence of the above assumptions is 

that MPEC Problem (1) can be reformulated as an equiva- 

lent one-level non-smooth and non-convex optimization prob- 

lem ( Facchinei et al., 1999 ), i.e. 

min f (x, y ) 
s . t . g(x ) ≤ 0 , 

F (x, y ) − ∇ y h (x, y ) λ = 0 , 

h (x, y ) ≥ 0 , λ ≥ 0 , λT h (x, y ) = 0 . 

(2) 

It is easy to see that, the complementarity-type constraints of the 

Problem (2) are unable to satisfy a standard constraint qualifica- 

tion which is necessary for the regularity of a nonlinear optimiza- 

tion problem ( Andreani, 2001; Luo et al., 1996 ). This causes great 

difficulty to use the ANN models for solving Problem (2) . 

To deal with this difficulty, this non-convex optimization prob- 

lem is transferred into a non-smooth equivalent reformulation of 

the Problem (2) as follows: 

min f (x, y ) 
s . t . g(x ) ≤ 0 , 

F (x, y ) − ∇ y h (x, y ) λ = 0 , 

h (x, y ) − z = 0 , 

−2 min (z, λ) = 0 . 

(3) 

Where z ∈ R 

l and min (z, λ) = ( min (z 1 , λ1 ) , . . . , min (z l , λl )) . The 

necessity of the multiplicative factor -2 before the minimum func- 

tion will shortly appear. Following the smoothing method pre- 

sented in Facchinei et al. (1999) , suggested ANN model for solving 

MPEC problems is presented in the next sections. 

Let ε ≥ 0 is a scalar. The function φ : R 

2 → R , defined by 

φε(u, v ) = 

√ 

(u − v ) 2 + 4 ε2 − (u + v ) , 

has following significant properties: 

(i) φε(u, v ) = 0 ⇐⇒ u ≥ 0 , v ≥ 0 , u v = ε2 . 

(ii) For every ε 	 = 0, the function φε(u, v ) is smooth for every u, v . 

(iii) lim ε→ 0 φε(u, v ) = −2 min (u, v ) , ∀ (u, v ) ∈ R 

2 . Hence, φε(u, v ) is 
a smooth perturbation of the minimum function. 

Define the following nonlinear functions H : R 

n + m +2 l → R 

p and 

G ε : R 

n + m +2 l → R 

m +2 l , 

H(w ) = H(x, y, z, λ) = h (x ) , 

G ε (w ) = G ε (x, y, z, λ) = 

( 

F (x, y ) − ∇ y h (x, y ) λ
h (x, y ) − z 
φε(z, λ) 

) 

, 

where 

φε(z, λ) = (φε(z 1 , λ1 ) , . . . , φε(z l , λl )) 
T . 

It can be easily seen that for every ε 	 = 0, G ε is locally Lipschitz 

continuous and regular. Then, the Problem (3) can be approxi- 

mated by 

min f (w ) 
s . t . H(w ) ≤ 0 , 

G ε (w ) = 0 . 

(4) 

Problem (4) can be considered as a perturbation of Problem 

(3) which is a smooth optimization problem. Thus, we dominate 

the difficulty that Problem (3) does not satisfy any regularity as- 

sumptions. 

Definition 1. ( Lv et al., 2011 ) Let w be a feasible point of Problem 

(4) and L = { j : H j (w ) = 0 , j = 1 , . . . , l} . We say that w is a regular 

point if the gradients ∇G ε1 
(w ) , . . . , ∇G εm +2 l 

(w ) and ∇H j (w ) , j ∈ L 

are linearly independent. 

The relationship between the Problem (4) and Problem (1) is 

clarified in the next theorem. 

Theorem 1. ( Lv et al., 2011 ) Let { w 

ε} be a sequence of solutions of 

Problem (4) . Suppose that { w 

ε} converges to w 

∗ for ε → 0 + . if w 

∗ is 

a regular point, then w 

∗ is a strong C-stationary point of the MPEC 

problem (1) . 

3. Energy function and neural subnetwork 

Regarding formulating MPEC problem in terms of a neural net- 

work, the basic procedure is to design a proper energy function 

such that the lowest energy state corresponds to the optimal solu- 

tion. Based on this function, a gradient system of first order differ- 

ential equations which corresponds to our ANN model, is consid- 

ered. 
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